Skip to main content

Advertisement

Log in

Biohydrogen Production in an AnSBBR Treating Glycerin-Based Wastewater: Effects of Organic Loading, Influent Concentration, and Cycle Time

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluated the influence of the applied volumetric organic load on biohydrogen production in an anaerobic sequencing batch biofilm reactor (AnSBBR) with 3.5 L of liquid medium and treating 1.5 L of glycerin-based wastewater per cycle at 30 °C. Six applied volumetric organic loads (AVOLCT) were generated from the combination of cycle periods (3 and 4 h) and influent concentrations (3000, 4000, and 5000 mg chemical oxygen demand (COD) L−1), with values ranging from 7565 to 16,216 mg COD L−1 day−1. No clear relationship was found between the applied volumetric organic load and the hydrogen production. However, the highest hydrogen molar production (MPr 67.5 mol H2 m−3 day−1) was reached when the reactor was operated with a cycle period of 4 h and an influent concentration of 5000 mg COD L−1 (AVOLCT 12,911 mg COD L−1 day−1). This condition also reached the highest molar yield per applied load based on the organic matter (MYALC,m 21.1 mol H2 kg COD−1). In addition, the pretreatment of the sludge/inoculum was found to not influence the productivity/yield of the process, and the use of crude glycerol as a sole source of carbon exhibited a clear disadvantage for hydrogen production compared to pure glycerol. The AnSBBR used for the hydrogen production experiments operated with pure glycerol as a sole carbon source exhibited important practical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASOLCT :

Applied specific organic load based on organic matter (kg COD m−3 day−1)

AVOLCT :

Applied volumetric organic load based on organic matter (kg COD m−3 day−1)

C CF :

Concentration based on organic matter for filtered samples in the effluent (mg COD L−1)

C CT :

Concentration based on organic matter for unfiltered samples in the effluent (mg COD L−1)

C CT,I :

Concentration based on organic matter for unfiltered samples in the influent (mg COD L−1)

C H2 :

Molar concentration (not quantity) of hydrogen at normal conditions of temperature and pressure (mmol-NCTP L-1)

C CH4 :

Molar concentration (not quantity) of methane at normal conditions of temperature and pressure (mmol-NCTP L-1)

C X :

Concentration of biomass in the reactor in total volatile solids per volume of liquid (g TVS L−1)

CX :

Concentration of biomass in the reactor in total volatile solids per mass of support (g TVS g support−1)

M TVS :

Total biomass in the reactor in total volatile solids (g TVS)

MPr:

Daily molar productivity of hydrogen (mol H2 m−3 day−1)

MYALC,m :

Molar yield per applied load based on organic matter expressed in kilograms (mol H2 kg COD−1)

MYRLC,m :

Molar yield per removed load based on organic matter expressed in kilograms (mol H2 kg COD−1)

N :

Number of cycles per day (cycle day−1)

n H2 :

Daily molar production of hydrogen (mol day−1)

RSOLCF :

Removed volumetric specific load based on organic matter (kg COD g TVS−1 day−1)

RVOLCF :

Removed specific organic load based on organic matter (kg COD m−3 day−1)

SB:

Sodium bicarbonate

SS:

Solutions of the salts specified in “Wastewater

SMPr:

Daily specific molar productivity of hydrogen (mol H2 kg TVS−1 day−1)

t C :

Cycle time (h cycle−1)

TA:

Total alkalinity (mg CaCO3 L−1)

TS:

Total solids concentration (mg L−1)

TSS:

Total suspended solids concentration (mg L−1)

TVA:

Total volatile acids (mg HAc L−1)

TVS:

Total volatile solids concentration (mg L−1)

VSS:

Volatile suspended solids concentration (mg L−1)

V F :

Volume of wastewater fed during the cycle (L cycle−1)

V H2 :

Daily volumetric production of hydrogen (mol day−1)

V R :

Volume of liquid medium in the reactor (L)

V G :

Normal volume of biogas (H2, CO2, and CH4) produced along a cycle (NmL cycle−1)

ε CF :

Removal efficiency based on organic matter for filtered samples (%)

ε CT :

Removal efficiency based on organic matter for unfiltered samples (%)

References

  1. Kumar, S. (2008). Anaerobic biotechnology for bioenergy production. Principles and applications (1st ed.). New Deli: Wiley.

    Google Scholar 

  2. Duffey, A. (2010). Dialogo de políticas sobre desarrollo interinstitucional e innovación en biocombustibles en América Latina y el Caribe. Santiago de Chile.

  3. Ruralcentro (2031). [on line]. Available on: http://ruralcentro.uol.com.br/noticias/biodiesel-brasil-ocupa-3-posicao-no-ranking-undial-de-produtores-65925#y=0. Accessed 8 Mar 2013.

  4. Federación Nacional de Biocombustibles de Colombia (2013). [on line]. Colombia. Available on: http://www.fedebiocombustibles.com. Accessed 7 Jan 2014.

  5. Chatzifragkou, A., & Papanikolaou, S. (2012). Applied Microbiology and Biotechnology, 95, 13–27.

    Article  CAS  Google Scholar 

  6. Kapdan, I., & Kargi, F. (2006). Enzyme and Microbial Technology, 38, 589–592.

    Article  Google Scholar 

  7. Rittman, B., & McCarty, P. (2001). Biotecnología del Medio Ambiente: Principios y Aplicaciones (1st ed.). New York: McGraw-Hill.

    Google Scholar 

  8. Manssouri, M., Rodrigues, J. A. D., Ratusznei, S., & Zaiat, M. (2013). Applied Biochemistry and Biotechnology, 171, 1832–1854.

    Article  CAS  Google Scholar 

  9. Luo, G., Karakashev, D., Xie, L., Zhou, Q., & Angelidaki, I. (2011). Biotechnology and Bioengineering, 108, 1816–1827.

    Article  CAS  Google Scholar 

  10. Dinamarca, C., & Bakker, R. (2009). Water Science and Technology, 59, 1441–1447.

    Article  CAS  Google Scholar 

  11. Hawkes, F., Hussi, I., Kiazze, C., Dinsdale, R., & Hawkes, D. (2007). International Journal of Hydrogen Energy, 32, 172–184.

    Article  CAS  Google Scholar 

  12. Angenent, L., Karim, K., Al-Dahhan, M., Wrenn, B., & Domingues, R. (2004). Trends in Biotechnology, 22, 477–485.

    Article  CAS  Google Scholar 

  13. Mandal, B., & Nath, K. (2006). Biotechnology Letters Journal, 28, 831–835.

    Article  CAS  Google Scholar 

  14. Maru, B., Stchigel, A., Medina, F., & Sueiras, J. (2012). American Institute of Chemical Engineers, 29, 31–38.

    Google Scholar 

  15. Sarma, S., Brar, S., Sydney, E., Bihan, Y., Buelna, G., & Socol, C. (2012). International Journal of Hydrogen Energy, 37, 6473–6490.

    Article  CAS  Google Scholar 

  16. Oh, S., Van Ginkel, S., & Logan, B. (2003). Environmental Science Technology, 37, 5186–5190.

    Article  CAS  Google Scholar 

  17. Hussy, I., Hawkes, F. R., Dinsdale, R., & Hawkes, D. L. (2003). Biotechnology Bioengineering, 84, 619–629.

    Article  CAS  Google Scholar 

  18. Ueno, Y., Otsuka, S., & Morimoto, M. (1996). Journal of Hydrogen and Bioengineering, 82, 194–197.

    CAS  Google Scholar 

  19. Ni, B., Liu, H., Nie, Y., Zeng, R., Du, G., Chen, J., & Yu, H. (2011). Biotechnology and Bioengineering, 108, 345–353.

    Article  CAS  Google Scholar 

  20. Ballongue, J., Maison, E., Amine, J., Petitdemange, H., & Gay, R. (1987). Applied Microbiology and Biotechnology, 26, 568–573.

    Article  CAS  Google Scholar 

  21. Doremus, M., Linden, J., & Moreira, A. (1985). Biotechnology and Bioengineering, 27, 852–860.

    Article  CAS  Google Scholar 

  22. Petitdemange, E., Durr, C., Abbad, A., & Raval, G. (1995). Journal of Industrial Microbiology and Biotechnology, 15, 498–502.

    Article  CAS  Google Scholar 

  23. He, B., & Thomson, J. (2006). Applied Engineering in Agriculture, 22, 261–265.

    Article  Google Scholar 

  24. Santos, D. A., Rodrigues, J. A. D., Ratusznei, S., & Zaiat, M. (2014). Brazilian Journal of Chemical Engineering, 31, 659–674.

    Article  Google Scholar 

  25. Venkata, S., Mohanakrishna, G., Raghavulu, V., & Sarma, P. (2007). International Journal of Hydrogen Energy, 32, 3284–3292.

    Article  Google Scholar 

  26. Venkata, S., Bhaskar, Y., & Sarma, P. (2007). Water Research, 41, 2652–2664.

    Article  Google Scholar 

  27. Venkata, S., Mohanakrishna, G., Ramanaiah, S., & Sarma, P. (2008). International Journal of Hydrogen Energy, 33, 550–558.

    Article  Google Scholar 

  28. Venkata, S., Mohanakrishna, G., & Sarma, P. (2008). International Journal of Hydrogen Energy, 33, 2156–2166.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil, 2009/15.984-0), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), and the Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. D. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, I.S.M., Lovato, G., Rodrigues, J.A.D. et al. Biohydrogen Production in an AnSBBR Treating Glycerin-Based Wastewater: Effects of Organic Loading, Influent Concentration, and Cycle Time. Appl Biochem Biotechnol 175, 1892–1914 (2015). https://doi.org/10.1007/s12010-014-1421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1421-1

Keywords

Navigation