Skip to main content
Log in

Purification, Characterization and Application of Lipoxygenase Isoenzymes from Lasiodiplodia theobromae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lipoxygenase oxidizes linoleic acid into hydroperoxy octadecadienoic acid (HPOD), which is important in food and flavour industries for production of bread and flavouring compounds. As Lasiodiplodia theobromae is an unexplored, good source of lipoxygenase, it was purified from it by size-exclusion (Sephadex G100) and ion-exchange (DEAE–cellulose) chromatography and characterized. Upon purification, L. theobromae was found to contain two different lipoxygenases, one of 93 kDa (LOX1) and another of 45 kDa (LOX2). Both the isoenzymes were having optimum pH 6.0 and optimum temperatures 50 and 40 °C, respectively. The catalytic efficiency of LOX1 and LOX2 was found to be 1300 and 1.67 × 109, respectively. The catalytic efficiency of LOX2 is higher than the catalytic efficiency of soya bean LOX1 that is 10.9 × 106. Both the isoenzymes of LOX oxidized linoleic acid to produce 9-HPOD and 13-HPOD both; however, LOX1 produced more of 9-HPOD and LOX2 produced more of 13-HPOD. Both the LOXes were not inhibited by jasmonic acid. Addition of LOX1 and LOX2 altered the elasticity as well as viscosity of dough prepared from bleached wheat flour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

LOX:

Lipoxygenase

HPOD:

Hydroperoxy octadecadienoic acid

DEAE:

Diethyl aminoethyl

SDS:

Sodium dodecyl sulphate

PAGE:

Polyacrylamide gel electrophoresis

kDa:

Kilodalton

JA:

Jasmonic acid

PMSF:

Phenylmethane sulphonyl fluoride

BSA:

Bovine serum albumin

LA:

Linoleic acid

HPLC:

High-performance liquid chromatography

LC–MS:

Liquid chromatography–mass spectroscopy

NDGA:

Nordihydroguaiaretic acid

APS:

Ammonium persulphate

LB plot:

Lineweaver–Burk plot

References

  1. Hildebrand, D. (1989). Physiologia Plantarum, 76, 249–253.

    Article  CAS  Google Scholar 

  2. Göbel, C., Feussner, I., & Rosahl, S. (2003). The Journal of Biological Chemistry, 278, 52834–52840.

    Article  Google Scholar 

  3. Shiiba, K., Negishi, Y., Okada, K., & Nagao, S. (1991). Cereal Chemistry, 68(2), 115.

    CAS  Google Scholar 

  4. Kunh, H., & Borchert, A. (2002). Free Radical Bio Med, 33(2), 154–172.

    Article  Google Scholar 

  5. Filippovich, S., Rybakov, Y., Afanasieva, T., Bachurina, G., Lukina, G., Ezhova, I., Nosova, A., Artjushkina, T., Sineokii, S., & Kritskii, M. (2001). Appl. Bi Chem. Microbiol, 37, 473–479.

    Article  CAS  Google Scholar 

  6. Kuribayashi, T., Kaise, H., Uno, C., Hara, T., Hayakawa, T., & Joh, T. (2002). Journal of Agricultural and Food Chemistry, 50, 1247–1253.

    Article  CAS  Google Scholar 

  7. Perez, G., Sanchez, F., & Garcia, C. (2005). Journal of Agricultural and Food Chemistry, 53, 3666–3671.

    Article  Google Scholar 

  8. Cumbee, B., Hiidebrand, D., & Addo, K. (1997). Journal Of Food Science, 62(2), 281–284.

    Article  CAS  Google Scholar 

  9. Dhandhukia, P., & Thakkar, V. (2007). Curr Trends Biotechnol and Pharm, 1(1), 79–86.

    CAS  Google Scholar 

  10. Surrey, P. (1964). Plant Physiology, 39, 65–70.

    Article  CAS  Google Scholar 

  11. Davis, B. (1964). Ann. New York Acad. Sci, 121(2), 404–427.

    Article  CAS  Google Scholar 

  12. Laemmli, U. (1970). Nature, 227, 239–251.

    Article  Google Scholar 

  13. Chen, A., & Whitaker, J. (1986). Journal of Agricultural and Food Chemistry, 34(2), 203–221.

    Article  CAS  Google Scholar 

  14. Lowry, O., Farr, A., Randall, R., & Rosenbrough, N. (1951). J. Biol. Chem 193, 1, 265–275.

    Google Scholar 

  15. Vick, B. (1991). Lipids, 26, 315–320.

    Article  CAS  Google Scholar 

  16. Kato, T., Ohta, H., Tanaka, K., & Shibata, D. (1992). Plant Physiology, 98(1), 324–330.

    Article  CAS  Google Scholar 

  17. Baysal, T., & Demirdöven, A. (2007). Enzyme and Microbial Technology, 40(4), 491–496.

    Article  CAS  Google Scholar 

  18. Brash, A. (1999). The Journal of Biological Chemistry, 274, 23679–23682.

    Article  CAS  Google Scholar 

  19. Robert, A., Creelman, M., Tierney, T., & Mullet, J. (1992). Plant Biology, 89, 4938–4941.

    Google Scholar 

  20. Jerneren, F. Eng, F, Hamburg, M. Ernst, H. Oliw. (2012). Lipids. 47, 65–73.

  21. Zhang, C., Tao, T., Ying, Q., Zhang, D., Lu, F., Bie, X., & Lu, Z. (2012). Applied Microbiology and Biotechnology, 94, 949–958.

    Article  CAS  Google Scholar 

  22. Maccarrone, M., Salucci, M. L., van Zadelhoff, G., Malatesta, F., Veldink, G., Vliegenthart, J. F., & Finazzi-Agrò, A. (2001). Biochemistry, 40(23), 6819–6827.

    Article  CAS  Google Scholar 

  23. Altunkaya, A., & Gökmen, V. (2011). Food Technol and Biotechnol, 49(2), 249–256.

    CAS  Google Scholar 

  24. Soberman, J., Harper, W., Betteridge, D., Lewis, A., & Austen, F. (1985). J Bio Chem, 260, 4508–4515.

    CAS  Google Scholar 

  25. Denis, D., Falgueyret, P., Riendeau, D., & Abramovitz, M. (1991). The Journal of Biological Chemistry, 266, 5072–5079.

    CAS  Google Scholar 

  26. Kuo, M., Hwang, A., Yeh, B., Pan, H., Tsai, L., & Pano, S. (2006). Journal of Agricultural and Food Chemistry, 54, 3151–3156.

    Article  CAS  Google Scholar 

  27. Duo-Chua, I., Zhen-Wei, U. I., & Jing, U. (2001). Mycological Research, 105(2), 190–194.

    Article  Google Scholar 

  28. Fukushige, H., Wang, C., Simpson, T., Gardner, H., & Hildebrand, D. (2005). Agric Food Chem, 53(14), 5691–5694.

    Article  CAS  Google Scholar 

  29. Mirsaeedghazi, H., Emam-Djomeh, Z., & Mousavi, S. (2008). Int. J. Agri. Biol, 10, 112–119.

    Google Scholar 

  30. Barajas, E. Wong, B. Chávez, P. and Rosas, I. (2012). in InTech Viscoelasticity—from theory to biological applications, pp. 259–272.

Download references

Acknowledgments

The authors are grateful to CSIR for funding and to the BRD School of Biosciences for the necessary facilities. We are also thankful to the DST-sponsored PURSE Central Facility for providing the LC–MS and rheometer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudev R. Thakkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D.D., Patel, R.R. & Thakkar, V.R. Purification, Characterization and Application of Lipoxygenase Isoenzymes from Lasiodiplodia theobromae . Appl Biochem Biotechnol 175, 513–525 (2015). https://doi.org/10.1007/s12010-014-1278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1278-3

Keywords

Navigation