Skip to main content
Log in

Structural Insights into Rice Straw Pretreated by Hot-Compressed Water in Relation to Enzymatic Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment-induced structural alteration is critical in influencing the rate and extent of enzymatic saccharification of lignocellulosic biomass. The present work has investigated structural features of rice straw pretreated by hot-compressed water (HCW) from 140 to 240 °C for 10 or 30 min and enzymatic hydrolysis profiles of pretreated rice straw. Compositional profiles of pretreated rice straw were examined to offer the basis for structural changes. The wide-angle X-ray diffraction analysis revealed possible modification in crystalline microstructure of cellulose and the severity-dependent variation of crystallinity. The specific surface area (SSA) of pretreated samples was able to achieve more than 10-fold of that of the raw material and was in linear relationship with the removal of acetyl groups and xylan. The glucose yield by enzymatic hydrolysis of pretreated materials correlated linearly with the SSA increase and the dissolution of acetyl and xylan. A quantitatively intrinsic relationship was suggested to exist between enzymatic hydrolysis and the extraction of hemicellulose components in hydrothermally treated rice straw, and SSA was considered one important structural parameter signaling the efficiency of enzymatic digestibility in HCW-treated materials in which hemicellulose removal and lignin redistribution happened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15, 804–816.

    Article  CAS  Google Scholar 

  2. Zhang, Y. H., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  3. Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2, 6.1–6.25.

    Article  Google Scholar 

  4. Zhu, L., O’Dwyer, J. P., Chang, V. S., Granda, C. B., & Holtzapple, M. T. (2008). Structural features affecting biomass enzymatic digestibility. Bioresource Technology, 99, 3817–3828.

    Article  CAS  Google Scholar 

  5. Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., & Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 338, 1055–1060.

    Article  CAS  Google Scholar 

  6. Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels. Bioproducts and Biorefining, 6, 465–482.

    Article  CAS  Google Scholar 

  7. Jeoh, T., Ishizawa, C. I., Davis, M. F., Himmel, M. E., Adney, W. S., & Johnson, D. K. (2007). Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioengineering, 98, 112–122.

    Article  CAS  Google Scholar 

  8. Arantes, V., & Saddler, J. N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels, 3, 4.

    Article  Google Scholar 

  9. Arantes, V., & Saddler, J. N. (2011). Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnology for Biofuels, 4, 3.

    Article  CAS  Google Scholar 

  10. Rollin, J. A., Zhu, Z., Sathitsuksanoh, N., & Zhang, Y. H. P. (2011). Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnology and Bioengineering, 108, 22–30.

    Article  CAS  Google Scholar 

  11. Himmel, M. E., Ding, S.–. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  12. Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering/Biotechnology, 108, 67–93.

    Article  CAS  Google Scholar 

  13. Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  14. Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  15. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Research, Article ID 787532.

  16. Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels. Bioproducts and Biorefining, 6, 561–579.

    Article  CAS  Google Scholar 

  17. Hu, F., & Ragauskas, A. (2012). Pretreatment and lignocellulosic chemistry. Bioenergy Research, 5, 1043–1066.

    Article  CAS  Google Scholar 

  18. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda, K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Bioscience Biotechnology and Biochemistry, 72, 805–810.

    Article  CAS  Google Scholar 

  19. Hall, M., Bansal, P., Lee, J. H., Realff, M. J., & Bommarius, A. S. (2010). Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS Journal, 277, 1571–1582.

    Article  CAS  Google Scholar 

  20. Ioelovich, M., & Morag, E. (2011). Effect of cellulose structure on enzymatic hydrolysis. Bioresources, 6, 2818–2835.

    CAS  Google Scholar 

  21. Mittal, A., Katahira, R., Himmel, M. E., & Johnson, D. K. (2011). Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnology for Biofuels, 4, 41.

    Article  CAS  Google Scholar 

  22. Puri, V. P. (1984). Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnology and Bioengineering, 26, 1219–1222.

    Article  CAS  Google Scholar 

  23. Thompson, D. N., Chen, H.–. C., & Grethlein, H. E. (1992). Comparison of pretreatment methods on the basis of available surface area. Bioresource Technology, 39, 155–163.

    Article  CAS  Google Scholar 

  24. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3, 10.

    Article  Google Scholar 

  25. Zeng, M., Mosier, N. S., Huang, C.–. P., Sherman, D. M., & Ladisch, M. R. (2007). Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnology and Bioengineering, 97, 265–278.

    Article  CAS  Google Scholar 

  26. Chandra, R. P., Esteghlalian, A. R., & Saddler, J. N. (2008). Assessing substrate accessibility to enzymatic hydrolysis by cellulases. In T. Q. Hu (Ed.), Characterization of lignocellulosic materials (pp. 60–80). Oxford: Blackwell Publishing Ltd.

    Chapter  Google Scholar 

  27. Hong, J., Ye, X., & Zhang, Y.–. H. P. (2007). Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir, 23, 12535–12540.

    Article  CAS  Google Scholar 

  28. Zhu, Z., Sathitsuksanoh, N., Vinzant, T., Schell, D. J., McMillan, J. D., Zhang, Y., & Zhang, Y.–. H. P. (2009). Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering, 103, 715–724.

    Article  CAS  Google Scholar 

  29. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  30. Yu, Y., Lou, X., & Wu, H. (2008). Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy and Fuels, 22, 46–60.

    Article  CAS  Google Scholar 

  31. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  32. Pu, Y., Hu, F., Huang, F., Davison, B. H., & Ragauskas, A. J. (2013). Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels, 6, 15.

    Article  CAS  Google Scholar 

  33. Ruiz, H. A., Rodriguez-Jasso, R. M., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2013). Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renewable and Sustainable Energy Reviews, 21, 35–51.

    Article  CAS  Google Scholar 

  34. Nitsos, C. K., Matis, K. A., & Triantafyllidis, K. S. (2013). Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem, 6, 110–122.

    Article  CAS  Google Scholar 

  35. Xiao, L.–. P., Sun, Z.–. J., Shi, Z.–. J., Xu, F., & Sun, R.–. C. (2011). Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. Bioresources, 6, 1576–1598.

    CAS  Google Scholar 

  36. Xiao, L.–. P., Shi, Z.–. J., Shi, F., & Sun, R.–. C. (2013). Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept. Bioresource Technology, 135, 73–81.

    Article  CAS  Google Scholar 

  37. Kristensen, J. B., Thygesen, L. G., Felby, C., Jorgensen, H., & Elder, T. (2008). Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology for Biofuels, 1, 5.

    Article  Google Scholar 

  38. Hansen, M. A. T., Kristensen, J. B., Felby, C., & Jorgensen, H. (2011). Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.)—the impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresource Technology, 102, 2804–2811.

    Article  CAS  Google Scholar 

  39. Zeng, M., Ximenes, E., Ladisch, M. R., Mosier, N. S., Vermerris, W., Huang, C.–. P., & Sherman, D. M. (2012). Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (Part 1). Biotechnology and Bioengineering, 109, 390–397.

    Article  CAS  Google Scholar 

  40. Zeng, M., Ximenes, E., Ladisch, M. R., Mosier, N. S., Vermerris, W., Huang, C.–. P., & Sherman, D. M. (2012). Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: SEM imaging (Part 2). Biotechnology and Bioengineering, 109, 398–404.

    Article  CAS  Google Scholar 

  41. Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26, 361–375.

    Article  Google Scholar 

  42. Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioethanol production from rice straw: an overview. Bioresource Technology, 101, 4767–4774.

    Article  CAS  Google Scholar 

  43. Yu, G., Yano, S., Inoue, H., Inoue, S., Endo, T., & Sawayama, S. (2010). Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 160, 539–551.

    Article  CAS  Google Scholar 

  44. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2006). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure: National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  45. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory Analytical Procedure: National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  46. Segal, L., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29, 786–794.

    Article  CAS  Google Scholar 

  47. Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2008). Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering, 101, 913–925.

    Article  CAS  Google Scholar 

  48. Sasaki, M., Adschiri, T., & Arai, K. (2004). Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AIChE Journal, 50, 192–202.

    Article  CAS  Google Scholar 

  49. O’Sullivan, A. C. (1997). Cellulose: the structure slowly unravels. Cellulose, 4, 173–207.

    Article  Google Scholar 

  50. Hsu, T.-C., Guo, G.-L., Chen, W.-H., & Hwang, W.-S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101, 4907–4913.

    Article  CAS  Google Scholar 

  51. French, A. D., & Cintron, M. S. (2013). Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose, 20, 583–588.

    Article  CAS  Google Scholar 

  52. Larsson, P. T., Wickholm, K., & Iversen, T. (1997). A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydrate Research, 302, 19–25.

    Article  CAS  Google Scholar 

  53. Larsson, P. T., Hult, E.-L., Wickholm, K., Pettersson, E., & Iversen, T. (1999). CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nuclear Magnetic Resonance, 15, 31–40.

    Article  CAS  Google Scholar 

  54. Ibbett, R., Gaddipati, S., Hill, S., & Tucker, G. (2013). Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility. Biotechnology for Biofuels, 6, 33.

    Article  CAS  Google Scholar 

  55. Chandel, A. K., Antunes, F. A. F., Anjos, V., Bell, M. J. V., Rodrigues, L. N., Polikarpov, I., Azevedo, E. R., Bernardinelli, O. D., Rosa, C. A., Pagnocca, F. C., & Silva, S. S. (2014). Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 7, 63.

    Article  Google Scholar 

  56. Kumar, R., Mago, G., Balan, V., & Wyman, C. E. (2009). Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology, 100, 3948–3962.

    Article  CAS  Google Scholar 

  57. Sinitsyn, A. P., Gusakov, A. V., & Vlasenko, E. Y. (1991). Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 30, 43–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yoshikuni Teramoto and Ms Noriko Tanaka for their help in the WAXD measurement and Dr. Shinji Fujimoto for his assistance in using the surface area analyzer. We acknowledge Dr. Tsuyoshi Sakaki for his comments on the experimental results. This work was partly supported by Japan International Cooperation Agency in the “Research on Biomass Technology” program and Beijing Natural Science Foundation (5133035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoce Yu or Shinichi Yano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Yano, S., Inoue, H. et al. Structural Insights into Rice Straw Pretreated by Hot-Compressed Water in Relation to Enzymatic Hydrolysis. Appl Biochem Biotechnol 174, 2278–2294 (2014). https://doi.org/10.1007/s12010-014-1199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1199-1

Keywords

Navigation