Skip to main content
Log in

Fungal Pretreatment by Phanerochaete chrysosporium for Enhancement of Biogas Production from Corn Stover Silage

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn stover silage (CSS) was pretreated by Phanerochaete chrysosporium in solid-state fermentation (SSF), to enhance methane production via subsequent anaerobic digestion (AD). Effects of washing of corn stover silage (WCSS) on the lignocellulosic biodegradability in the fungal pretreatment step and on methane production in the AD step were investigated with comparison to the CSS. It was found that P. chrysosporium had the degradation of cellulose, hemicellulose, and lignin of CSS up to 19.9, 32.4, and 22.6 %, respectively. Consequently, CSS pretreated by 25 days achieved the highest methane yield of 265.1 mL/g volatile solid (VS), which was 23.0 % higher than the untreated CSS. However, the degradation of cellulose, hemicellulose, and lignin in WCSS after 30 days of SSF increased to 45.9, 48.4, and 39.0 %, respectively. Surface morphology and Fourier-transform infrared spectroscopy analyses also demonstrated that the WCSS improved degradation of cell wall components during SSF. Correspondingly, the pretreatment of WCSS improved methane production by 19.6 to 32.6 %, as compared with untreated CSS. Hence, washing and reducing organic acids (such as lactic acid, acetic acid, propionic acid, and butyric acid) present in CSS has been proven to further improve biodegradability in SSF and methane production in the AD step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown, D., Shi, J., & Li, Y. (2012). Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresource technology, 124, 379–386.

    Article  CAS  Google Scholar 

  2. Chen, Q., Marshall, M. N., Geib, S. M., Tien, M., & Richard, T. L. (2012). Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresource Technology, 117, 186–192.

    Article  CAS  Google Scholar 

  3. Chen, Y., Sharma-Shivappa, R. R., & Chen, C. (2007). Ensiling agricultural residues for bioethanol production. Applied Biochemistry and Biotechnology, 143, 80–92.

    Article  CAS  Google Scholar 

  4. Danner, H., Holzer, M., Mayrhuber, E., & Braun, R. (2003). Acetic acid increases stability of silage under aerobic conditions. Applied and Environmental Microbiology, 69, 562–567.

    Article  CAS  Google Scholar 

  5. Darku, I., Marshall, M., & Richard, T. (2010). Implications of organic acids in wet storage and bioconversion of corn stover to ethanol. Pennsylvania: ASABE Annual International Meeting.

    Google Scholar 

  6. Dowe, N., & McMillan, J. (2001). SSF experimental protocols: lignocellulosic biomass hydrolysis and fermentation. National Renewable Energy Laboratory (NREL) Analytical: Procedures.

    Google Scholar 

  7. Faix, O. (1992), in Methods in lignin chemistry, Springer, pp. 83–109.

  8. Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Microbial pretreatment of biomass. Applied Biochemistry and Biotechnology, 105, 27–41.

    Article  Google Scholar 

  9. Kim, S., & Holtzapple, M. T. (2006). Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology, 97, 583–591.

    Article  CAS  Google Scholar 

  10. Klinke, H. B., Thomsen, A., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  11. Knauf, M., & Kraus, K. (2006). Specific yeasts developed for modern ethanol production. Sugar Industry/Zuckerindustrie, 131, 753–758.

    CAS  Google Scholar 

  12. Lavigne, A., & Powers, S. E. (2007). Evaluating fuel ethanol feedstocks from energy policy perspectives: a comparative energy assessment of corn and corn stover. Energy Policy, 35, 5918–5930.

    Article  Google Scholar 

  13. Liew, L. N., Shi, J., & Li, Y. (2012). Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass and Bioenergy, 46, 125–132.

    Article  CAS  Google Scholar 

  14. Liu, S., Wu, S., Pang, C., Li, W., & Dong, R. (2013). Microbial pretreatment of corn stovers by solid-state cultivation of Phanerochaete chrysosporium for biogas production. Applied Biochemistry and Biotechnology, 1–12.

  15. Liu, S., Wu, S., Pang, C., Li, W., & Dong, R. (2014). Microbial pretreatment of corn stovers by solid-state cultivation of Phanerochaete chrysosporium for biogas production. Applied Biochemistry and Biotechnology, 172, 1365–1376.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  17. Moon, N. J. (1983). Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. Journal of Applied Microbiology, 55, 453–460.

    CAS  Google Scholar 

  18. Morrison, I. (1979). Changes in the cell wall components of laboratory silages and the effect of various additives on these changes. The Journal of Agricultural Science, 93, 581–586.

    Article  CAS  Google Scholar 

  19. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  20. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresource technology, 74, 25–33.

    Article  CAS  Google Scholar 

  21. Pinto, P. A., Dias, A. A., Fraga, I., Marques, G., Rodrigues, M. A., Colaço, J., Sampaio, A., & Bezerra, R. M. (2012). Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresource Technology, 111, 261–267.

    Article  CAS  Google Scholar 

  22. Pohl, M., Heeg, K., & Mumme, J. (2013). Anaerobic digestion of wheat straw—performance of continuous solid-state digestion. Bioresource Technology, 146, 408–415.

    Article  CAS  Google Scholar 

  23. Ren, H., Richard, T. L. and Moore, K. J. (2007), in Applied Biochemistry and Biotechnology, Springer, pp. 221–238.

  24. Richard, T., Proulx, S., Moore, K., & Shouse, S. (2001). Ensilage technology for biomass pre-treatment and storage. Sacramento: ASAE Annual International Meeting.

    Google Scholar 

  25. Salvachúa, D., Prieto, A., López-Abelairas, M., Lu-Chau, T., Martínez, Á. T., & Martínez, M. J. (2011). Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technology, 102, 7500–7506.

    Article  Google Scholar 

  26. Shi, J., Chinn, M. S., & Sharma-Shivappa, R. R. (2008). Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresource Technology, 99, 6556–6564.

    Article  CAS  Google Scholar 

  27. Shi, J., Sharma-Shivappa, R. R., Chinn, M., & Howell, N. (2009). Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 33, 88–96.

    Article  CAS  Google Scholar 

  28. Shinners, K. J., Binversie, B. N., Muck, R. E., & Weimer, P. J. (2007). Comparison of wet and dry corn stover harvest and storage. Biomass and Bioenergy, 31, 211–221.

    Article  Google Scholar 

  29. Shrestha, P., Rasmussen, M., Khanal, S. K., Pometto Iii, A. L., & van Leeuwen, J. (2008). Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. Journal of Agricultural and Food Chemistry, 56, 3918–3924.

    Article  CAS  Google Scholar 

  30. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98, 3000–3011.

    Article  CAS  Google Scholar 

  31. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  32. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9, 1621–1651.

    Article  CAS  Google Scholar 

  33. Takara, D., & Khanal, S. K. (2012). Biomass pretreatment for biofuel production (pp. 59–70). Sustainable Bioenergy and Bioproducts: Springer.

    Google Scholar 

  34. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100, 637–643.

    Article  CAS  Google Scholar 

  35. Torija, M. J., Beltran, G., Novo, M., Poblet, M., Rozès, N., Mas, A., & Guillamón, J. M. (2003). Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. Journal of Agricultural and Food Chemistry, 51, 916–922.

    Article  CAS  Google Scholar 

  36. Vervaeren, H., Hostyn, K., Ghekiere, G., & Willems, B. (2010). Biological ensilage additives as pretreatment for maize to increase the biogas production. Renewable Energy, 35, 2089–2093.

    Article  CAS  Google Scholar 

  37. Wan, C., & Li, Y. (2010). Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme and Microbial Technology, 47, 31–36.

    Article  CAS  Google Scholar 

  38. Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30, 1447–1457.

    Article  CAS  Google Scholar 

  39. Xu, J., Thomsen, M. H., & Thomsen, A. B. (2009). Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid. Journal of Biotechnology, 139, 300–305.

    Article  CAS  Google Scholar 

  40. Yen, H.-W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98, 130–134.

    Article  CAS  Google Scholar 

  41. Zeng, J., Singh, D., & Chen, S. (2011). Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Bioresource Technology, 102, 3206–3214.

    Article  CAS  Google Scholar 

  42. Zhao, J., Zheng, Y. and Li, Y. (2014) Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresource Technology

  43. Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural & Biological Engineering, 2, 58–67.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the project of “Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, China,” the Chinese Universities Scientific Fund (No. 2014JD034 and 2013YJ007) and Beijing Municipal Science and Technology Projects (No. D141100001214001 and D141100001214002). We likewise greatly appreciate the critical and constructive comments from the anonymous reviewers, which have helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubiao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, X., Wu, S. et al. Fungal Pretreatment by Phanerochaete chrysosporium for Enhancement of Biogas Production from Corn Stover Silage. Appl Biochem Biotechnol 174, 1907–1918 (2014). https://doi.org/10.1007/s12010-014-1185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1185-7

Keywords

Navigation