Skip to main content
Log in

Microbial Pretreatment of Corn Stovers by Solid-State Cultivation of Phanerochaete chrysosporium for Biogas Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH4 yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7 % and CH4 yield by 11.7 to 21.2 % because pretreatment could decrease dry mass loss (14.2 %) and increase substrate biodegradability (19.9 % cellulose, 32.4 % hemicellulose, and 22.6 % lignin). By contrast, the higher dry mass loss in corn stover (55.3 %) after microbial pretreatment was accompanied by 54.7 % cellulose, 64.0 % hemicellulose, and 61.1 % lignin degradation but did not significantly influence biogas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Bureau of Statistics of China. China statistical yearbook. (2010). Beijing. China: China Statistics Press.

    Google Scholar 

  2. Zeng, X., Ma, Y., & Ma, L. (2007). Renewable and Sustainable Energy Reviews, 11, 976–987.

    Article  CAS  Google Scholar 

  3. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., & Holtzapple, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  4. Xie, S., Frost, J., Lawlor, P., Wu, G., & Zhan, X. (2011). Bioresource Technology, 102, 8748–8755.

    Article  CAS  Google Scholar 

  5. Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W., & Xiao, M. (2011). Bioresource Technology, 102, 11177–11182.

    Article  CAS  Google Scholar 

  6. Fernandes, T., Klaasse Bos, G., Zeeman, G., Sanders, J., & Van Lier, J. (2009). Bioresource Technology, 100, 2575–2579.

    Article  CAS  Google Scholar 

  7. Hendriks, A., & Zeeman, G. (2009). Bioresource Technology, 100, 10.

    Article  CAS  Google Scholar 

  8. Isroi., Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M.N., Lundquist, K., & Taherzadeh, M.J. (2011). Bioresources, 6, 5224–5259.

  9. Taherzadeh, M. J., & Karimi, K. (2008). International Journal of Molecular Sciences, 9, 1621–1651.

    Article  CAS  Google Scholar 

  10. Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Applied Biochemistry and Biotechnology, 105, 27–41.

    Article  Google Scholar 

  11. Shi, J., Chinn, M. S., & Sharma-Shivappa, R. R. (2008). Bioresource Technology, 99, 6556–6564.

    Article  CAS  Google Scholar 

  12. Amirta, R., Tanabe, T., Watanabe, T., Honda, Y., Kuwahara, M., & Watanabe, T. (2006). Journal of Biotechnology, 123, 71–77.

    Article  CAS  Google Scholar 

  13. Wan, C., & Li, Y. (2010). Bioresource Technology, 101, 6398–6403.

    Article  CAS  Google Scholar 

  14. Yu, J., Zhang, J., He, J., Liu, Z., & Yu, Z. (2009). Bioresource Technology, 100, 903–908.

    Article  CAS  Google Scholar 

  15. Yu, H., Guo, G., Zhang, X., Yan, K., & Xu, C. (2009). Bioresource Technology, 100, 5170–5175.

    Article  CAS  Google Scholar 

  16. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Journal of Bioscience and Bioengineering, 100, 637–643.

    Article  CAS  Google Scholar 

  17. Shrestha, P., Rasmussen, M., Khanal, S. K., Pometto Iii, A. L., & Van Leeuwen, J. (2008). Journal of Agricultural and Food Chemistry, 56, 3918–3924.

    Article  CAS  Google Scholar 

  18. Bak, J. S., Ko, J. K., Choi, I. G., Park, Y. C., Seo, J. H., & Kim, K. H. (2009). Biotechnology and Bioengineering, 104, 471–482.

    Article  CAS  Google Scholar 

  19. Shi, J., Sharma-Shivappa, R. R., & Chinn, M. S. (2009). Bioresource Technology, 100, 4388–4395.

    Article  CAS  Google Scholar 

  20. Zeng, J., Singh, D., & Chen, S. (2011). Bioresource Technology, 102, 3206–3214.

    Article  CAS  Google Scholar 

  21. Niu, D. J., Wang, J. Y., Wang, B. Y., & Zhao, Y. C. (2011). International Journal of Hydrogen Energy, 36, 5289–5295.

    Article  CAS  Google Scholar 

  22. McDonald, P., Henderson, N., & Heron, S. (1991). The Biochemistry of Silage (2nd ed.). Great Britain: Chalcombe Publications.

    Google Scholar 

  23. Morrison, I. M. (1979). Journal of Agricultural Science, 93, 581–586.

    Article  CAS  Google Scholar 

  24. Henderson, N. (1993). Animal Feed Science and Technology, 45, 35–56.

    Article  CAS  Google Scholar 

  25. Richard, T., Proulx, S., Moore, K., & Shouse, S. (2001). ASAE annual international meeting, Sacramento, CA.

  26. Nkosi, B., Meeske, R., Palic, D., & Langa, T. (2009). Animal Feed Science and Technology, 150, 144–150.

    Article  CAS  Google Scholar 

  27. Herrmann, C., Heiermann, M., & Idler, C. (2011). Bioresource Technology, 102, 5153–5161.

    Article  CAS  Google Scholar 

  28. Rincón, B., Banks, C. J., & Heaven, S. (2010). Bioresource Technology, 101, 8179–8184.

    Article  Google Scholar 

  29. Vervaeren, H., Hostyn, K., Ghekiere, G., & Willems, B. (2010). Renewable Energy, 35, 2089–2093.

    Article  CAS  Google Scholar 

  30. Pakarinen, O., Lehtomäki, A., Rissanen, S., & Rintala, J. (2008). Bioresource Technology, 99, 7074–7082.

    Article  CAS  Google Scholar 

  31. Wan, C., & Li, Y. (2012). Biotechnology Advances, 30, 1447–1457.

    Article  CAS  Google Scholar 

  32. Pandey, K., & Pitman, A. (2003). International Biodeterioration & Biodegradation, 52, 151–160.

    Article  CAS  Google Scholar 

  33. Chen, Y., Sharma-Shivappa, R., & Chen, C. (2007). Applied Biochemistry and Biotechnology, 143, 80–92.

    Article  CAS  Google Scholar 

  34. Xu, C., Ma, F., Zhang, X., & Chen, S. (2010). Agricultural and Food Chemistry, 58, 10893–10898.

    Article  CAS  Google Scholar 

  35. Wan, C., & Li, Y. (2010). Enzyme and Microbial Technology, 47, 31–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the project of “Key Technologies on Energy Cycle Regulation in Typical Agricultural System (2012BAD14B03),” “Chinese Universities Scientific Fund (2013YJ007),” and “Non-profit Research Foundation for Agriculture (201103039)”. We likewise greatly appreciate the critical and constructive comments from the anonymous reviewers, which have helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubiao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Wu, S., Pang, C. et al. Microbial Pretreatment of Corn Stovers by Solid-State Cultivation of Phanerochaete chrysosporium for Biogas Production. Appl Biochem Biotechnol 172, 1365–1376 (2014). https://doi.org/10.1007/s12010-013-0604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0604-5

Keywords

Navigation