Skip to main content
Log in

Succinic Acid Production from Corn Cob Hydrolysates by Genetically Engineered Corynebacterium glutamicum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l−1 xylose and 4 g l−1 glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l−1 with a yield of 0.69 g g−1 total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang, D., Li, Q., Yang, M. H., Zhang, Y. J., Su, Z. G., & Xing, J. M. (2011). Process Biochemistry, 46, 365–371.

    Article  CAS  Google Scholar 

  2. Ji, X. J., Huang, H., Du, J., Zhu, J. G., Ren, L. J., Li, S., et al. (2009). Bioresource Technology, 100, 5214–5218.

    Article  CAS  Google Scholar 

  3. Dorado, M. P., Lin, S. K., Koutinas, A., Du, C. Y., Wang, R. H., & Webb, C. (2009). Journal of Biotechnology, 143, 51–59.

    Article  CAS  Google Scholar 

  4. Lynd, L., & Wyman, C. (1999). Biotechnology Progress, 15, 777–793.

    Article  CAS  Google Scholar 

  5. Kim, K. H., & Hong, J. (2001). Bioresource Technology, 77, 139–144.

    Article  CAS  Google Scholar 

  6. Rivas, B., Torre, P., Dominguez, J. M., Perego, P., Converti, A., & Parajo, J. C. (2003). Biotechnology Progress, 19, 706–713.

    Article  CAS  Google Scholar 

  7. Garrote, G., Cruz, J. M., Dominguez, H., & Parajo, J. C. (2003). Journal of Chemical Technology and Biotechnology, 78, 392–398.

    Article  CAS  Google Scholar 

  8. Nabarlatz, D., Farriol, X., & Montane, D. (2004). Industrial and Engineering Chemistry Research, 43, 4124–4131.

    Article  CAS  Google Scholar 

  9. Tada, K., Horiuchi, J. I., Kanno, T., & Kobayashi, M. (2004). Journal of Bioscience and bioengineering, 98, 228–230.

    Article  CAS  Google Scholar 

  10. Hendriks, A. T., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  11. Jeffries, T. W., & Jin, Y. S. (2000). Advances in Applied Microbiology, 47, 221–268.

    Article  CAS  Google Scholar 

  12. Gopinath, V., Meiswinkel, T. M., Wendisch, V. F., & Nampoothiri, K. M. (2011). Applied Microbiology and Biotechnology, 92, 985–996.

    Article  CAS  Google Scholar 

  13. Hermann, T. (2003). Journal of Biotechnology, 104, 155–172.

    Article  CAS  Google Scholar 

  14. Jojima, T., Fujii, M., Mori, E., Inui, M., & Yukawa, H. (2010). Applied Microbiology and Biotechnology, 87, 159–165.

    Article  CAS  Google Scholar 

  15. Inui, M., Kawaguchi, H., Murakami, S., Alain, A. V., & Yukawa, H. (2004). Journal of Molecular Microbiology and Biotechnology, 8, 243–254.

    Article  Google Scholar 

  16. Okino, S., Inui, M., & Yukawa, H. (2005). Applied Microbiology and Biotechnology, 68, 475–480.

    Article  CAS  Google Scholar 

  17. Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M., & Yukawa, H. (2008). Applied Microbiology and Biotechnology, 81, 459–464.

    Article  CAS  Google Scholar 

  18. Sakai, S., Tsuchida, Y., Okino, S., Ichihashi, O., Kawaguchi, H., Watanabe, T., et al. (2007). Applied and Environmental Microbiology, 73, 2349–2353.

    Article  CAS  Google Scholar 

  19. Kawaguchi, H., Vertès, A. A., Okino, S., Inui, M., & Yukawa, H. (2006). Applied and Environmental Microbiology, 72, 3418–3428.

    Article  CAS  Google Scholar 

  20. Buschke, N., Schroer, H., & Wittmann, C. (2011). Journal of Biotechnology, 6, 306–317.

    Article  CAS  Google Scholar 

  21. Blombach, B., & Seibold, G. M. (2010). Applied Microbiology and Biotechnology, 86, 1313–1322.

    Article  CAS  Google Scholar 

  22. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  23. Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hagerdal, B. (1999). Biotechnology and Bioengineering, 63, 46–55.

    Article  CAS  Google Scholar 

  24. Zaldivar, J., & Ingram, L. O. (1999). Biotechnology and Bioengineering, 66, 203–210.

    Article  CAS  Google Scholar 

  25. Zaldivar, J., Martinez, A., & Ingram, L. O. (1999). Biotechnology and Bioengineering, 65, 24–33.

    Article  CAS  Google Scholar 

  26. Zaldivar, J., Martinez, A., & Ingram, L. O. (2000). Biotechnology and Bioengineering, 68, 524–530.

    Article  CAS  Google Scholar 

  27. Ge, J. P., Cai, B. Y., Liu, G. M., Ling, H. Z., Fang, B. Z., Song, G., et al. (2011). African Journal of Microbiology Research, 5, 1163–1168.

    CAS  Google Scholar 

  28. Tao, H., Gonzalez, R., Martinez, A., Rodriguez, M., Ingram, L. O., Preston, J. F., et al. (2001). Journal of Bacteriology, 183, 2979–2988.

    Article  CAS  Google Scholar 

  29. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., & Pühler, A. (1994). Gene, 145, 69–73.

    Article  Google Scholar 

  30. Jakoby, M., Ngouoto-Nkili, C. E., & Burkovski, A. (1999). Biotechnology Techniques, 13, 437–441.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Min Jiang at Nanjing University of Technology, China, for providing strains of C. glutamicum ATCC 13032. This work was financially supported by the National Key Basic Research and Development Program of China (no. 2011CBA00807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Cai.

Additional information

Chen Wang and Hengli Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Zhang, H., Cai, H. et al. Succinic Acid Production from Corn Cob Hydrolysates by Genetically Engineered Corynebacterium glutamicum . Appl Biochem Biotechnol 172, 340–350 (2014). https://doi.org/10.1007/s12010-013-0539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0539-x

Keywords

Navigation