Skip to main content
Log in

Enzymatic Characterization of a Type II Isocitrate Dehydrogenase from Pathogenic Leptospira interrogans serovar Lai Strain 56601

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Leptospira interrogans, a Gram-negative pathogen, could cause infections in a wide variety of mammalian hosts, but due to their fastidious cultivation requirements and the lack of genetic systems, the pathogenic factor is still not clear. Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylation (TCA) cycle, which could have an important impact on the growth and pathogenesis of the bacteria. In the present study, we first report the cloning, heterologous expression, and detailed characterization of the IDH gene from L. interrogans serovar Lai strain 56601(LiIDH). The molecular weight of LiIDH was determined to be 87 kDa by filtration chromatography, suggesting LiIDH is a typical homodimer. The optimum activity of LiIDH was found at 60 °C, and its optimum pH was 7.0 (Mn2+) and 8.0 (Mg2+). Heat inactivation studies showed that heat treatment for 20 min at 50 °C caused a 50 % loss of enzyme activity. LiIDH was completely divalent cation dependent as other typical dimeric IDHs and Mg2+ was its best activator. The recombinant LiIDH specificities (k cat/K m values for NADP+ and NAD+) in the presence of Mg2+ and Mn2+ were 6,269-fold and 1,000-fold greater for NADP+ than NAD+, respectively. This current work is expected to shed light on the functions of metabolic enzymes in L. interrogans and provide useful information for LiIDH to be considered as a possible candidate for serological diagnostics and detection of L. interrogans infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hurley, J. H., Dean, A. M., Koshland, D. E., Jr., & Stroud, R. M. (1991). Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry, 30(35), 8671–8678.

    Article  CAS  Google Scholar 

  2. Zhu, G. P., Golding, G. B., & Dean, A. M. (2005). The selective cause of an ancient adaptation. Science, 307(5713), 1279–1282.

    Article  CAS  Google Scholar 

  3. Chen, R., & Jeong, S. S. (2000). Functional prediction: identification of protein orthologs and paralogs. Protein Science, 9(12), 2344–2353.

    Article  CAS  Google Scholar 

  4. Karlstrom, M., Steen, I. H., Madern, D., Fedoy, A. E., Birkeland, N. K., & Ladenstein, R. (2006). The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. FEBS Journal, 273(13), 2851–2868.

    Article  Google Scholar 

  5. Bai, C., Fernandez, E., Yang, H., & Chen, R. (1999). Purification and stabilization of a monomeric isocitrate dehydrogenase from Corynebacterium glutamicum. Protein Expression and Purification, 15(3), 344–348.

    Article  CAS  Google Scholar 

  6. Ceccarelli, C., Grodsky, N. B., Ariyaratne, N., Colman, R. F., & Bahnson, B. J. (2002). Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism. Journal of Biological Chemistry, 277(45), 43454–43462.

    Article  CAS  Google Scholar 

  7. Xu, X., Zhao, J., Xu, Z., Peng, B., Huang, Q., Arnold, E., et al. (2004). Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. Journal of Biological Chemistry, 279(32), 33946–33957.

    Article  CAS  Google Scholar 

  8. Peng, Y., Zhong, C., Huang, W., & Ding, J. (2008). Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction. Protein Science, 17(9), 1542–1554.

    Article  CAS  Google Scholar 

  9. Steen, I. H., Madern, D., Karlstrom, M., Lien, T., Ladenstein, R., & Birkeland, N. K. (2001). Comparison of isocitrate dehydrogenase from three hyperthermophiles reveals differences in thermostability, cofactor specificity, oligomeric state, and phylogenetic affiliation. Journal of Biological Chemistry, 276(47), 43924–43931.

    Article  CAS  Google Scholar 

  10. Zhong, Y., Chang, X., Cao, X. J., Zhang, Y., Zheng, H., Zhu, Y., et al. (2011). Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Research, 21(8), 1210–1229.

    Article  CAS  Google Scholar 

  11. Qin, J. H., Zhang, Q., Zhang, Z. M., Zhong, Y., Yang, Y., Hu, B. Y., et al. (2008). Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai. Infection and Immunity, 76(6), 2411–2419.

    Article  CAS  Google Scholar 

  12. Ren, S. X., Fu, G., Jiang, X. G., Zeng, R., Miao, Y. G., Xu, H., et al. (2003). Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature, 422(6934), 888–893.

    Article  CAS  Google Scholar 

  13. Dunn, M. F., Ramírez-Trujillo, J. A., & Hernández-Lucas, I. (2009). Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology, 155(Pt 10), 3166–3175.

    Article  CAS  Google Scholar 

  14. Prasad, U. V., Vasu, D., Kumar, Y. N., Kumar, P. S., Yeswanth, S., Swarupa, V., et al. (2013). Cloning, expression and characterization of NADP-dependent isocitrate dehydrogenase from Staphylococcus aureus. Applied Biochemistry and Biotechnology, 169(3), 862–869.

    Article  CAS  Google Scholar 

  15. Banerjee, S., Nandyala, A., Podili, R., Katoch, V. M., Murthy, K. J., & Hasnain, S. E. (2004). Mycobacterium tuberculosis (Mtb) isocitrate dehydrogenases show strong B cell response and distinguish vaccinated controls from TB patients. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12652–12657.

    Article  CAS  Google Scholar 

  16. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  Google Scholar 

  17. Gouet, P., Courcelle, E., Stuart, D. I., & Métoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 15(4), 305–308.

    Article  CAS  Google Scholar 

  18. Contreras-Shannon, V., Lin, A. P., McCammon, M. T., & McAlister-Henn, L. (2005). Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases. Journal of Biological Chemistry, 280(6), 4469–4475.

    Article  CAS  Google Scholar 

  19. Eikmanns, B. J., Rittmann, D., & Sahm, H. (1995). Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. Journal of Bacteriology, 177(3), 774–782.

    CAS  Google Scholar 

  20. Wang, A., Cao, Z. Y., Wang, P., Liu, A. M., Pan, W., Wang, J., et al. (2011). Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. Molecular Biology Reports, 38(6), 3717–3724.

    Article  CAS  Google Scholar 

  21. Kanao, T., Kawamura, M., Fukui, T., Atomi, H., & Imanaka, T. (2002). Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola. A carbon dioxide-fixing enzyme in the reductive tricarboxylic acid cycle. European Journal of Biochemistry, 269(7), 1926–1931.

    Article  CAS  Google Scholar 

  22. Dean, A. M., & Golding, G. B. (1997). Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 94(7), 3104–3109.

    Article  CAS  Google Scholar 

  23. Zhang, B., Wang, B., Wang, P., Cao, Z., Huang, E., Hao, J., et al. (2009). Enzymatic characterization of a monomeric isocitrate dehydrogenase from Streptomyces lividans TK54. Biochimie, 91(11–12), 1405–1410.

    Article  CAS  Google Scholar 

  24. Watanabe, S., Yasutake, Y., Tanaka, I., & Takada, Y. (2005). Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology, 151(Pt 4), 1083–1094.

    Article  CAS  Google Scholar 

  25. Roy, S. O., & Packard, T. T. (1998). NADP-Isocitrate dehydrogenase from Pseudomonas nautica: kinetic constant determination and carbon limitation effects on the pool of intracellular substrates. Applied and Environmental Microbiology, 64(12), 4958–4964.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National High Technology Research and Development Program ("863" Program: 2012AA02A708), the National Natural Science Foundation of China (31170005), Specialized Research Fund for the Doctoral Program of Higher Education of China (20113424110004), Anhui provincial Natural Science Foundation (1308085QC67), and Key Grant of Anhui Bureau of Education (KJ2013A128; KJ2013A129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Wang, P., Zhu, G. et al. Enzymatic Characterization of a Type II Isocitrate Dehydrogenase from Pathogenic Leptospira interrogans serovar Lai Strain 56601. Appl Biochem Biotechnol 172, 487–496 (2014). https://doi.org/10.1007/s12010-013-0521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0521-7

Keywords

Navigation