Skip to main content
Log in

Production of Extremely Alkaliphilic, Halotolerent, Detergent, and Thermostable Mannanase by the Free and Immobilized Cells of Bacillus halodurans PPKS-2. Purification and Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular extreme alkaliphilic, halotolerent, detergent, and thermostable mannanase activity. The cultural conditions for the maximum enzyme production were optimized with respect to pH, temperature, NaCl, and inexpensive agro wastes as substrates. Mannanase production was enhanced more than 4-fold in the presence of 1 % defatted copra meal and 0.5 % peptone or feather hydrolysate at pH 11 and 40 °C. Mannanase was purified to 10.3-fold with 34.6 % yield by ion exchange and gel filtration chromatography methods. Its molecular mass was estimated to be 22 kDa by SDS-PAGE. The mannanase had maximal activity at pH 11 and 70 °C. This enzyme was active over a broad range of NaCl (0–16 %) and thermostable retaining 100 % of the original activity at 70 °C for 3 h. Immobilization of whole cells proved to be effective for continuous production of mannanase. Since the strain PPKS-2 grows on cheaper agro wastes such as defatted copra meal, corn husk, jowar bagasse, and wheat bran, these can be exploited for mannanase production on an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Capoe, P., Kuackova, M., & Alfoldi, J. (2000). Carbohydrate Research, 329, 635–645.

    Article  Google Scholar 

  2. Handford, M. G., Baldwin, T. C., Goubet, F., Prime, T. A., Miles, J., Yu, X., et al. (2003). Planta, 218, 27–36.

    Article  CAS  Google Scholar 

  3. Dekker, R. F. H., & Richards, G. N. (1976). Advances in Carbohydrate Chemistry and Biochemistry, 32, 277–352.

    Article  CAS  Google Scholar 

  4. Moreira, L. R. S., & Filho, E. X. F. (2008). Applied Microbiology and Biotechnology, 79, 165–178.

    Article  CAS  Google Scholar 

  5. Gubitz, G. M., Lischnig, T., Stebbing, D., & Saddler, N. N. (1997). Biotechnology Letters, 19, 491–495.

    Article  CAS  Google Scholar 

  6. Puls, J., Schuseil, J. in Hemicellulose and hemicellulases, (Coughlan, M.P., Hazlewood, G.P., ed.), London: Portland press; p. 1–27

  7. Cuevas, W. A., Kantelinen, A., Tanner, P., Bodie, B., and Leskinen, S. (1996). in: Biotechnology in the Pulp and Paper Industry, (Srebotnik E., Messner K., Srebotnik, E., Messner, K., eds.), Vienna, Austria: Facultas- Universitatsverlag

  8. Adernark, P., Varga, A., Medve, J., Harjunpaa, V., Drakenberg, T., Tjerneld, F., et al. (1998). Journal of Biotechnology, 63, 199–210.

    Article  Google Scholar 

  9. Ferreira, H. M., & Filho, E. X. F. (2004). Carbohydrate Polymers, 57, 23–29.

    Article  CAS  Google Scholar 

  10. Hatada, Y., Takeda, N., Hirasawa, K., Ohta, Y., Usami, R., & Yoshida, Y. (2005). Extremophiles, 9, 497–500.

    Article  CAS  Google Scholar 

  11. McCutchen, C. M., Duffaud, G. D., Leduc, P., Petersen, A. R. H., Tayal, A., Khan, S. A., et al. (1996). Biotechnology and Bioengineering, 52, 332–339.

    Article  CAS  Google Scholar 

  12. Oda, Y., Komaki, T., & Tonomara, K. (1993). Journal of Fermentation and Bioengineering, 76, 14–18.

    Article  CAS  Google Scholar 

  13. Hossain, M. Z., Ae, J., & Hizukuri, S. (1996). Enzyme and Microbial Technology, 18, 95–98.

    Article  CAS  Google Scholar 

  14. Akino, T., Kato, C., & Horikoshi, K. (1989). Archieves of Microbiology, 152, 10–15.

    Article  CAS  Google Scholar 

  15. Prakash, P., Jayalakshmi, S. K., & Sreeramulu, K. (2009). Applied Biochemistry and Biotechnology, 160, 1909–1920.

    Article  Google Scholar 

  16. Silveira, F. Q. P., Melo, I. S., & Filho, E. X. F. (1997). Revista de Microbiologia, 28, 152–156.

    Google Scholar 

  17. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  18. Lowry, O. H., Roserough, N. J., Farr, A. L., & Randal, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Cann, I. K., Kocherginskaya, S., King, M. R., White, A., & Mackie, R. I. (1999). Journal of Bacteriology, 181, 1643–1651.

    CAS  Google Scholar 

  21. Franco, P. F., Ferreira, H. M., & Filho, E. X. F. (2004). Applied Biochemistry and Biotechnology, 40, 255–259.

    Article  CAS  Google Scholar 

  22. Vidyasagar, M., Prakash, S., Jayalakshmi, S. K., & Sreeramulu, K. (2007). World Journal of Microbiology and Biotechnology, 23, 655–662.

    Article  CAS  Google Scholar 

  23. Bagai, R., & Madamwar, D. (1997). Applied Biochemistry and Biotechnology, 62, 213–218.

    Article  CAS  Google Scholar 

  24. Virupakshi, S., Gireeshbabu, K., & Nayak, G. R. (2005). Journal of Microbiology and Biotechnology, 15, 689–693.

    CAS  Google Scholar 

  25. Ooi, T., & Kikuchi, D. (1995). World Journal of Microbiology and Biotechnology, 11, 310–314.

    Article  CAS  Google Scholar 

  26. Gherardini, F. C., & Salyers, A. A. (1987). Journal of Bacteriology, 169, 2038–2043.

    CAS  Google Scholar 

  27. Dhawan, S., & Kaur, J. (2007). Critical Reviews in Biotechnology, 27, 197–216.

    Article  CAS  Google Scholar 

  28. Gupta, S., & Hoondal, B. G. S. (1999). World Journal of Microbiology and Biotechnology, 15, 511–512.

    Article  CAS  Google Scholar 

  29. Talbot, G., & Sygusch, J. (1990). Applied and Environmental Microbiology, 56, 3505–3510.

    CAS  Google Scholar 

  30. Bakhtiar, S., Andersson, M. M., Gessesse, A., Mattiasson, B., & Hatti-Kaul, R. (2002). Enzyme and Microbial Technology, 32, 525–531.

    Article  Google Scholar 

  31. Zhang, M., Chen, X. L., Zhang, Z. H., Sun, C. Y., Chen, L. L., He, H. L., et al. (2009). Applied Microbiology and Biotechnology, 83, 865–873.

    Article  CAS  Google Scholar 

  32. Gubitz, G. M., Hayn, M., Uranz, G., & Steiner, W. (1996). Journal of Biotechnology, 45, 165–172.

    Article  Google Scholar 

  33. Tenkanen, M., Makkonen, M., Perttula, M., Viikari, L., & Teleman, A. (1997). Journal of Biotechnology, 57, 191–204.

    Article  CAS  Google Scholar 

  34. Prakash, P., Jayalakshmi, S. K., Prakash, B., Rubul, M., & Sreeramulu, K. (2012). World Journal of Microbiology and Biotechnology, 28, 183–192.

    Article  CAS  Google Scholar 

  35. Sachslehner, A., Foildl, G., Foidl, N., Güitz, G., & Haltrich, D. (2000). Journal of Biotechnology, 80, 127–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank UGC, New Delhi, for providing grants for JRF under UGC-SAP (DSR-I) scheme to VS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreeramulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayalaxmi, S., Prakash, P., Jayalakshmi, S.K. et al. Production of Extremely Alkaliphilic, Halotolerent, Detergent, and Thermostable Mannanase by the Free and Immobilized Cells of Bacillus halodurans PPKS-2. Purification and Characterization. Appl Biochem Biotechnol 171, 382–395 (2013). https://doi.org/10.1007/s12010-013-0333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0333-9

Keywords

Navigation