Skip to main content

Advertisement

Log in

MS Analysis and Molecular Characterization of Botrytis cinerea Protease Prot-2. Use in Bioactive Peptides Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Prot-2 protease previously purified to homogeneity from Botrytis cinerea showed potentiality to be used in detergency and for production of bioactive peptides. To extend the characterization of Prot-2 protease, antifungal and antibacterial assays were performed in vitro using protein hydrolysates prepared from muscle of mackerel (Scomber scomborus) treated with this enzyme. The most active hydrolysate (degree of hydrolysis of 8 %) exhibited inhibition effect towards bacteria and phytopathogenic fungi, demonstrating that Prot-2 proteolysis generated bioactive peptides. Biochemical and molecular characterization of the purified Prot-2, by SDS-PAGE/Tryptic in gel-digestion and LC-MS/MS analysis, was investigated. The peptide amino acid sequence alignment search in database revealed a moderate homology between the determined amino acid sequence of Prot-2 protease and the known fungal trypsin/chymotrypsin in particular from Glomerella, Metarhizium and Streptomyces. From peptide sequence data obtained by mass spectrometry and sequences homologies, primers were defined and a cDNA fragment of 786 bp was amplified by RT-PCR. The cDNA nucleotide sequence analysis revealed an open reading frame coding for 262 amino acid residues. The deduced amino acid sequence of Prot-2 showed moderate identity with trypsin of Glomerella graminicola (74 %) and with chymotrypsin from Metarhizium anisopliae (71 %). Prot-2 exhibited a Ser protease homology and showed in addition the specific His motif of trypsin/chymotrypsin family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta, R., Beg, Q., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  2. Li, A. N., Xie, C., Zhang, J., Zhang, J., & Li, D. C. (2011). Journal of Microbiology, 49(1), 121–129.

    Article  CAS  Google Scholar 

  3. Shikha, S. A., & Darmwal, N. S. (2007). Bioresource Technology, 98, 881–885.

    Article  CAS  Google Scholar 

  4. Ma, C., Ni, X., Chi, Z., Ma, L., & Gao, L. (2007). Marine Biotechnology, 9, 343–351.

    Article  CAS  Google Scholar 

  5. Silva, S. V., & Malcata, F. X. (2005). International Dairy Journal, 15, 1–15.

    Article  CAS  Google Scholar 

  6. Mine, Y., & Kovacs-Nolan, J. (2006). World's Poultry Science Journal, 62, 87–95.

    Article  Google Scholar 

  7. Vercruysse, L., van-Camp, J., & Smagghe, G. (2005). Journal of Agricultural and Food Chemistry, 53, 8106–8115.

    Article  CAS  Google Scholar 

  8. Nagai, T., Suzuki, N., & Nagashima, T. (2006). Food Sci Technol., 12, 335–346.

    Article  CAS  Google Scholar 

  9. Kodera, T., & Nio, N. (2006). Journal of Food Science, 71, 164–173.

    Article  Google Scholar 

  10. Zhu, K. X., Zhou, H. M., & Qian, H. F. (2006). Process Biochemistry, 41, 1296–1302.

    Article  CAS  Google Scholar 

  11. Lee, J. E., Bae, I. Y., Lee, H. G., & Yang, C. B. (2006). Food Chemistry, 99, 143–148.

    Article  CAS  Google Scholar 

  12. Braaksma, M., & Punt, P. J. (2008). In G. H. Goldman & S. A. Osmani (Eds.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods (pp. 441–455). Boca Raton, FL: CRC Press.

    Google Scholar 

  13. Heerikhuisen, M., van-den Hondel, C. A. M. J. J., & Punt, P. J. (2005). In: Gelissen G (ed.). Weinheim, Wiley, pp. 191–214.

  14. Katz, M. E., Bernardo, S. M., & Cheetham, B. F. (2008). Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation. Current Genetics, 54, 47–55.

    Article  CAS  Google Scholar 

  15. Shen, H. D., Wang, C. W., Lin, W. L., Lai, H. Y., Tam, M. F., Chou, H., et al. (2001). The Journal of Laboratory and Clinical Medicine, 137, 115–124.

    Article  CAS  Google Scholar 

  16. Liu, Y., & Yang, Q. (2007). FEMS Microbiology Letters, 277, 173–181.

    Article  CAS  Google Scholar 

  17. Pel, H. J., de Winde, J. H., Archer, D. B., Dyer, P. S., Hofmann, G., Schaap, P. J., et al. (2007). Nature Biotechnology, 25, 221–231.

    Article  Google Scholar 

  18. Vickers, I., Reeves, E. P., Kavanagh, K. A., & Doyle, S. (2007). Protein Expression and Purification, 53, 216–224.

    Article  CAS  Google Scholar 

  19. Kim, T., & Lei, X. G. (2005). Applied Microbiology and Biotechnology, 68, 355–359.

    Article  CAS  Google Scholar 

  20. Li, A. N., & Li, D. C. (2009). Journal of Applied Microbiology, 106, 369–380.

    Article  CAS  Google Scholar 

  21. Gonzalez-Fernandez, R., & Jorrin-Novo, J. V. (2012). Journal of Proteome Research, 11, 3–16.

    Article  CAS  Google Scholar 

  22. Bhadauria, V., Banniza, S., Wang, L.-X., Wei, Y.-D., & Peng, Y.-L. (2010). European Journal of Plant Pathology, 126, 81–95.

    Article  Google Scholar 

  23. Garrido, C., Cantoral, J. M., Carbú, M., González-Rodríguez, V. E., & Fernández-Acero, F. J. (2010). Curr Proteomics, 7, 306–315.

    Article  CAS  Google Scholar 

  24. Fernández-Acero, F. J., Colby, T., Harzen, A., Carbú, M., Wieneke, U., Cantoral, J. M., et al. (2010). Proteomics, 10, 2270–2280.

    Article  Google Scholar 

  25. Abidi, F., Limam, F., & Marzouki, M. N. (2008). Process Biochemistry, 43, 1202–1208.

    Article  CAS  Google Scholar 

  26. Segers, R., Butt, T. M., Kerry, B. R., & Peberdy, J. F. (1994). Microbiology, 140, 2715–2723.

    Article  CAS  Google Scholar 

  27. Phillips, P. K., Prior, D., & Awes, B. D. (1984). Journal of Clinical Pathology, 3, 329–331.

    Article  Google Scholar 

  28. Thys, R. C. S., Guzzon, S. O., Cladera-Olivera, F., & Brandelli, A. (2006). Process Biochemistry, 41, 67–73.

    Article  CAS  Google Scholar 

  29. Abidi, F., Chobert, J. M., Haertlé, T., & Marzouki, M. N. (2011). Process Biochemistry, 46, 2301–2310.

    Article  CAS  Google Scholar 

  30. Abidi, F., Limam, F., & Marzouki, M. N. (2007). Applied Biochemistry and Biotechnology, 141, 361–376.

    Article  CAS  Google Scholar 

  31. Balti, R., Nedjar-Arroume, N., Bougatef, A., Guillochon, D., & Nasri, M. (2010). Food Research International, 43, 1136–1143.

    Article  CAS  Google Scholar 

  32. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–54.

    Article  CAS  Google Scholar 

  33. Adler-Nissen, J. (1986). In J. Adler-Nissen (Ed.), Enzymic hydrolysis of food proteins (pp. 57–109). Copenhagen, Denmark: Elsevier Applied Science Publishers.

    Google Scholar 

  34. Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C. I. G., Angioni, A., Dessi, S., et al. (2007). Journal of Agricultural and Food Chemistry, 55, 963–969.

    Article  CAS  Google Scholar 

  35. Guo, Z., Chen, R., Xing, R., Liu, S., Yu, H., Wang, P., et al. (2006). Carbohydrate Research, 341, 351–354.

    Article  CAS  Google Scholar 

  36. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  37. Kang, D., Song, G. Y. S., Suh, M., & Hulhun, K. C. (2002). Bulletin of the Korean Chemical Society, 23, 1511–1512.

    Article  CAS  Google Scholar 

  38. Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., et al. (2004). Electrophoresis, 25, 1327–1333.

    Article  CAS  Google Scholar 

  39. Yu, L., Zeng, R., Shao, X., Wang, N., Xu, Y., & Xia, Q. (2000). Electrophoresis, 21, 3058–3068.

    Article  CAS  Google Scholar 

  40. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  41. Sangers, F., Nicklen, S., & Coulson, A. R. (1977). Proceedings of the National Academy of Sciences, 74, 5463–5467.

    Article  Google Scholar 

  42. Kim, S. K., & Wijesekara, I. (2010). Journal of Functional Foods, 2, 1–9.

    Article  CAS  Google Scholar 

  43. Kristinsson, H. G., & Rasco, B. A. (2000). Critical Reviews in Food Science and Nutrition, 40, 43–81.

    Article  CAS  Google Scholar 

  44. Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Food Chemistry, 114, 1198–1205.

    Article  CAS  Google Scholar 

  45. Nasri, R., Ben Amor, I., Bougatef, A., Arroume, N., Dhulster, P., Gargouri, J., et al. (2012). Food Chemistry, 133, 835–841.

    Article  CAS  Google Scholar 

  46. Sun, H. Z., Guo, C., Tian, Y., Chen, D., Greenaway, F. T., & Liu, S. (2010). Biochimie, 92, 343–349.

    Article  CAS  Google Scholar 

  47. Kawai, K., Shimazaki, K., Higuchi, H., & Nagahata, H. (2007). Zoonoses and Public Health, 54, 160–164.

    Article  CAS  Google Scholar 

  48. Bijinu, B., Binod, P., Amit, K. R., Suresh, P. V., Mahendrakar, N. S., & Bhaskar, N. (2011). Biodegradation, 22, 287–295.

    Article  Google Scholar 

  49. Najafian, L., & Babji, A. S. (2012). Peptides, 13, 178–185.

    Article  Google Scholar 

  50. Floris, R., Recio, I., Berkhout, B., & Visser, S. (2003). Current Pharmaceutical Design, 9, 1257–1275.

    Article  CAS  Google Scholar 

  51. McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., & Roginski, H. (2005). International Dairy Journal, 15, 133–143.

    Article  CAS  Google Scholar 

  52. Liu, Z., Zeng, M., Dong, S., Xu, J., Song, H., & Zhao, Y. (2007). Postharvest Biology and Technology, 46, 95–98.

    Article  CAS  Google Scholar 

  53. Hellio, C., Pons, A. M., Beaupoil, C., Bourgougnon, N., & Le Gal, Y. (2002). International Journal of Antimicrobial Agents, 20, 214–219.

    Article  CAS  Google Scholar 

  54. Kuyama, H., Sonomura, K., Nishimura, O., & Tsunasawa, S. (2008). Analytical Biochemistry, 380, 291–296.

    Article  CAS  Google Scholar 

  55. Screen, S. E., & St. Leger, R. J. (2000). The Journal of Biological Chemistry, 275, 6689–6694.

    Article  CAS  Google Scholar 

  56. Karchani-Balma, S., Gautier, A., Raies, A., & Fournier, E. (2008). Phytopathology, 98, 1271–1279.

    Article  CAS  Google Scholar 

  57. Blow, D. M., Birktoft, J. J., & Hartley, B. S. (1996). Nature, 221, 337–340.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial project of LIP-MB Laboratory, INSAT, Carthage University, Ministry of Higher Education and Scientific Research of Tunisia. The authors acknowledge the support of Professor Mohamed Rabeh Hajlaoui, Laboratory of Plant Protection, National Institute for Agricultural Research, INRA, Tunisia (Rue Hedi Karray, 2049 Ariana, Tunisia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Chobert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abidi, F., Aissaoui, N., Gaudin, JC. et al. MS Analysis and Molecular Characterization of Botrytis cinerea Protease Prot-2. Use in Bioactive Peptides Production. Appl Biochem Biotechnol 170, 231–247 (2013). https://doi.org/10.1007/s12010-013-0186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0186-2

Keywords

Navigation