Skip to main content
Log in

Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts

  • Review
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Proteomics, the systematic analysis of the proteome, is a powerful tool in the post-genomic era. Proteomics studies have examined global changes in proteomes of phytopathogenic fungi, oomycetes and their hosts during compatible or incompatible interactions. This article compiles proteomics reports in order to decipher the molecular mechanisms underlying fungal development (infection-related morphogenesis), fungal or oomycete—host plant interactions, and phytopathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2-DE/MS:

two-dimensional electrophoresis/mass spectrometry

2D-DIGE/MS:

two-dimensional differential gel electrophoresis/mass spectrometry

MudPIT:

multidimensional protein identification technology

LC/MS:

liquid chromatography/mass spectrometry

MALDI-TOF:

matrix-assisted laser desorption ionisation-time-of-flight

ESI-Q-TOF MS/MS:

electrospray ionisation quadrupole time-of-flight tandem mass spectrometry

Qq:

hybrid quadrupole

nESI:

nano electrospray ionisation

IT:

ion trap

References

  • Allen, R. L., Bittner-Eddy, P. D., Grenvitte-Briggs, L. J., Meitz, J. C., Rehmany, A. P., Rose, L. E., & Beynon, J. L. (2004). Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science, 306, 1957–1960.

    Article  CAS  PubMed  Google Scholar 

  • Amey, R. C., Schleicher, T., Slinn, J., Lewis, M., Macdonald, H., Neill, S. J., et al. (2008). Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. European Journal of Plant Pathology, 122, 41–55.

    Article  CAS  Google Scholar 

  • Armstrong, M. R., Whisson, S. C., Pritchard, L., Bos, J. I. B., Venter, E., Avrova, A. O., et al. (2005). An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognised in the host cytoplasm. Proceedings of the National Academy of Sciences USA, 102(21), 7766–7771.

    Article  CAS  Google Scholar 

  • Ausubel, F. M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nature Immunology, 6, 973–979.

    Article  CAS  PubMed  Google Scholar 

  • Barr, D. J. S. (1992). Evolution and kingdoms from the perspective of a mycologist. Mycologia, 84, 1–11.

    Article  Google Scholar 

  • Basarab, G. S., Jordan, D. B., Gehret, T. C., Schwartz, R. S., & Wawrzak, Z. (1999). Design of scytalone dehydratase inhibitors as rice blast fungicides: derivatives of norephedrine. Bioorganic and Medicinal Chemistry Letters, 9, 1613–1618.

    Article  CAS  PubMed  Google Scholar 

  • Baumeister, W., Walz, J., Zühl, F., & Seemüller, E. (1998). The proteasome: paradigm of a self-compartmentalizing protease. Cell, 92, 367–380.

    Article  CAS  PubMed  Google Scholar 

  • Beever, R. E., & Weeds, P. L. (2004). Taxonomy and genetic variation of Botrytis and Botryotinia. In Y. Elad, B. Williamson, P. Tudzynski & N. Delan (Eds.), Botrytis: Biology, pathology and control (pp. 29–52). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Bent, A., & Mackey, D. (2007). Elicitors, effectors and R genes: the new paradigm and a lifetime supply of questions. Annual Review of Phytopathology, 45, 399–436.

    Article  CAS  PubMed  Google Scholar 

  • Birch, P. R., Rehmany, A. P., Pritchard, L., Kamoun, S., & Beynon, J. L. (2006). Trafficking arms: Oomycete effectors enter host plant cells. Trends in Microbiology, 14, 8–11.

    Article  CAS  PubMed  Google Scholar 

  • Böhmer, M., Colby, T., Bohmer, C., Brautigam, A., Schmidt, J., & Boker, M. (2007). Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics, 7, 675–685.

    Article  PubMed  CAS  Google Scholar 

  • Boland, G. J., & Hall, R. (1994). Index of host plants of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93–108.

    Google Scholar 

  • Bölker, M. (2001). Ustilago maydis—a valuable model system for the study of fungal dimorphism and virulence. Microbiology, 147, 1395–1401.

    PubMed  Google Scholar 

  • Bolton, M. D., van Esse, H. P., Vossen, J. H., de Jonge, R., Stergiopoulos, I., Stulemeijer, I., et al. (2008). The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology, 69(1), 119–136.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. K., Mesarich, C. H., Rees-George, J., Cui, W., Fitzgerald, A., Win, J., et al. (2009). Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis. Molecular Plant Pathology, 10(3), 431–448.

    Article  Google Scholar 

  • Campo, S., Carrascal, M., Coca, M., Abián, J., & Segundo, B. S. (2004). The defense response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics, 4, 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Cao, T., Kim, Y. M., Kav, N. N. V., & Strelkov, S. E. (2009). A proteomic evaluation of Pyrenophora tritici-repentis, causal agent of tan spot of wheat, reveals major differences between virulent and avirulent isolates. Proteomics, 9, 1177–1196.

    Article  CAS  PubMed  Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host—microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J. S. C., & Spencer-Phillips, P. T. N. (2000). Downy Mildews. In J. Lederberg, M. Alexander, B. R. Bloom, D. Hopwood, R. Hull, B. H. Inglearski, A. I. Laskia, S. G. Oliver, M. Schaechter & W. C. Summers (Eds.), Encyclopaedia of microbiology (Vol. 2, pp. 117–129). San Diego: Academic.

    Google Scholar 

  • Colditz, F., Nyamsuren, O., Niehaus, K., Eubel, H., Braun, H. P., & Krajinski, F. (2004). Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Molecular Biology, 55, 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Colditz, F., Braun, H. P., Jacquet, H., Niehaus, K., & Krajinski, F. (2005). Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces uteiches tolerance of Medicago truncatula. Plant Molecular Biology, 59, 387–406.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, B., Neelam, A., Campbell, K. B., Lee, J., Liu, G., Garrett, W. M., et al. (2007). Protein accumulation in the germinating Uromyces appendiculatus uredospore. Molecular Plant-Microbe Interactions, 20(7), 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Coumans, J. V. F., Poljak, A., Raftery, M. J., Backhouse, D., & Pereg-Gerk, L. (2009). Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus. Proteomics, 9, 335–349.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, R. L. (1981). Lignin biodegradation and transformation. New York: Wiley.

    Google Scholar 

  • Curto, M., Camafeita, E., Lopez, J. A., Maldonado, A. M., Rubiales, D., & Jorrín, J. V. (2006). A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics, 6, S163–S174.

    Article  PubMed  Google Scholar 

  • Desjardins, A. E., Proctor, R. H., Bai, G., McCormick, S. P., Shaner, G., Buechley, G., et al. (1996). Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Molecular Plant-Microbe Interactions, 9, 775–781.

    CAS  Google Scholar 

  • Dixon, R. A. (2001). Natural products and disease resistance. Nature, 411, 843–847.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R. A., & Lamb, C. J. (1990). Molecular communication in interactions between plant and microbial pathogens. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 339–367.

    Article  CAS  Google Scholar 

  • Ducret, A., van Oostveen, I., Eng, J. K., Yates, J. R., III, & Aebersold, R. (1998). High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Science, 7, 706–719.

    Article  CAS  PubMed  Google Scholar 

  • Ebstrup, T., Saalbach, G., & Egsgaard, H. (2005). A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics, 5, 2839–2848.

    Article  CAS  PubMed  Google Scholar 

  • Edreva, A. (2005). Pathogenesis-related proteins: research progress in the last 15 years. General and Applied Plant Physiology, 31, 105–124.

    CAS  Google Scholar 

  • Feldbrügge, M., Kämper, J., Steinberg, G., & Kahmann, R. (2004). Regulation of mating and pathogenic development in Ustilago maydis. Current Opinion in Microbiology, 7, 666–672.

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I., Carbú, M., Camafeita, E., et al. (2006). Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics, 6, S88–S96.

    Article  PubMed  Google Scholar 

  • Figeys, D., Linda, D., McBroom, L. D., & Moran, M. F. (2001). Mass spectrometry for the study of protein–protein interactions. Methods, 24, 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9, 275–296.

    Article  Google Scholar 

  • Gatlin, C. L., Kleemann, G. R., Hays, L. G., Link, A. J., & Yates, J. R., III. (1998). Protein identification at the low femtomole level from silver stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Analytical Biochemistry, 263, 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Geddes, J., Eudes, F., Laroche, A., & Selinger, B. (2008). Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics, 8, 545–554.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn, D. J. (1989). Aphanomyces root rot. In Compendium of Pea Diseases, American Phytopathological Society Press, St. Paul, MN

  • Harris, L. J., Desjardins, A. E., Plattner, R. D., Nicholson, P., Butler, G., Young, J. C., et al. (1999). Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Disease, 83, 954–960.

    Article  Google Scholar 

  • Houterman, P. M., Speijer, D., Dekker, H. L., De Koster, C. G., Cornelissen, B. J. C., & Rep, M. (2007). The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Molecular Plant Pathology, 8, 215–221.

    Article  CAS  PubMed  Google Scholar 

  • James, P. (1997). Protein identification in the post-genome era: the rapid rise of proteomics. Quarterly Reviews of Biophysics, 30, 279–331.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, D. B., Basarab, G., Steffens, J. J., Schwartz, R. S., & Doughty, J. G. (2000a). Tight-binding inhibitors of scytalone dehydratase: effects of site-388 directed mutations. Biochemistry, 39, 8593–8602.

    Article  CAS  Google Scholar 

  • Jordan, D. B., Zheng, Y. J., Locket, B. A., & Basarab, G. S. (2000b). Stereochemistry of the Enolization of scytalone by scytalone dehydratase. Biochemistry, 39, 2276–2282.

    Article  CAS  Google Scholar 

  • Kamoun, S. (2005). A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology, 44, 1–20.

    Google Scholar 

  • Kämper, J., Kahmann, R., Bölker, M., Ma, L. J., Brefort, T., Saville, B. J., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 444, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Kav, N. V. N., Srivastava, S., Yajima, W., & Sharma, N. (2007). Application of proteomics to investigate plant-microbe interactions. Current Proteomics, 4, 28–43.

    Article  CAS  Google Scholar 

  • Kim, S. T., Cho, K. S., Yu, S., Kim, S. G., Hong, J. C., Han, C., et al. (2003). Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics, 3, 2368–2378.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., et al. (2004a). Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics, 4, 3569–3578.

    Article  CAS  Google Scholar 

  • Kim, S. T., Yu, S., Kim, S. G., Kim, H. J., Kang, S. Y., Hwang, D. H., et al. (2004b). Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics, 4, 3579–3587.

    Article  CAS  Google Scholar 

  • Kleemann, J., Takahara, H., Stüber, K., & O’Connell, R. (2008). Identification of Colletotrichum higginsianum by analysis of expressed sequence tags. Microbiology, 154, 1204–1217.

    Article  CAS  PubMed  Google Scholar 

  • Klein, R. D., Gu, Q. M., Goddard, A., & Rosenthal, A. (1996). Selection for genes encoding secreted proteins and receptors. Proceedings of the National Academy of Sciences USA, 93, 7108–7113.

    Article  CAS  Google Scholar 

  • Krämer, R., Freytag, S., & Schmelzer, E. (1997). In vitro formation of infection structures of Phytophthora infestans is associated with synthesis of stage specific polypeptides. European Journal of Plant Pathology, 103, 43–53.

    Article  Google Scholar 

  • Krijger, J., Horbach, R., Behr, M., Schweizer, P., Deising, H. B., & Wirsel, S. G. R. (2008). The yeast signal trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Molecular Plant-Microbe Interactions, 10, 1325–1336.

    Article  CAS  Google Scholar 

  • Lamari, L., Sayoud, R., Boulif, M., & Bernier, C. C. (1995). Identification of a new race in Pyrenophora tritici-repentis: Implications for the current pathotype classification system. Canadian Journal of Plant Pathology, 17, 312–318.

    Google Scholar 

  • Lebeda, A., Luhova, L., Sedlarova, M., & Jancova, D. (2001). The role of enzymes in plant–fungal pathogens interactions. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 108, 89–111.

    CAS  Google Scholar 

  • Lee, S. J., Kelley, B. S., Damasceno, C. M. B., John, B. S., Kim, B. S., Kim, B. D., et al. (2006). A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Molecular Plant-Microbe Interactions, 19, 1368–1377.

    Article  CAS  PubMed  Google Scholar 

  • Link, T., & Voegele, R. T. (2008). Secreted proteins of Uromyces fabae: similarities and stage specificity. Molecular Plant Pathology, 9, 59–66.

    CAS  PubMed  Google Scholar 

  • Lu, M., Tang, X., & Zhou, J. M. (2001). Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell, 13, 437–447.

    Article  CAS  PubMed  Google Scholar 

  • McMullen, M., Jones, R., & Gallenburg, D. (1997). Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease, 81, 1340–1348.

    Article  Google Scholar 

  • Matsuzaki, F., Shimizu, M., & Wariishi, H. (2008). Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. Journal of Proteome Research, 7, 2342–2350.

    Article  CAS  PubMed  Google Scholar 

  • Melin, P., Schnürer, J., & Wagner, E. G. H. (2003). Characterization of phiA, a gene essential for phialide development in Aspergillus nidulans. Fungal Genetics and Biology, 40, 234–241.

    Article  CAS  PubMed  Google Scholar 

  • Noir, S., Colby, T., Harzen, A., Schmidt, J., & Panstruga, R. (2008). A proteomic analysis of powdery mildew (Blumeria graminis f.sp. hordei) conidiospores. Molecular Plant Pathology, 10(2), 223–236.

    Article  Google Scholar 

  • Paper, J. M., Scott-Craig, J. S., Adhikari, N. D., Cuomo, C. A., & Walton, J. D. (2007). Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics, 7, 3171–3183.

    Article  CAS  PubMed  Google Scholar 

  • Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathology, 44, 207–238.

    Article  Google Scholar 

  • Rampitsch, C., Bykova, N. V., McCallum, B., Beimcik, E., & Ens, W. (2006). Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics, 6, 1897–1907.

    Article  CAS  PubMed  Google Scholar 

  • Rehmany, A. P., Gordon, A., Rose, L. E., Allen, R. L., Armstrong, M. R., Whisson, S. C., et al. (2005). Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell, 17, 1839–1850.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, M. R., Salinas, J., & Collinge, D. B. (2002). 14-3-3 proteins and the response to abiotic and biotic stress. Plant Molecular Biology, 50, 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  • Sarkanen, K. V., & Ludwig, C. H. (1971). Lignin: Occurrence, formation, structure, and reactions. New York: Wiley.

    Google Scholar 

  • Shan, W., Cao, M., Leung, D., & Tyler, B. M. (2004). The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Molecular Plant Microbe Interactions, 17, 394–403.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd, S. J., Van West, P., & Gow, N. A. R. (2003). Proteomic analysis of asexual development of Phytophthora palmivora. Mycological Research, 107, 395–400.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, M., Yuda, N., Nakamura, T., Tanaka, H., & Wariishi, H. (2005). Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycetes Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics, 5, 3919–3931.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B., & Roger, A. J. (2002). Eukaryotic evolution: Getting to the root of the problem. Current Biology, 12, R691–R693.

    Article  CAS  PubMed  Google Scholar 

  • Soanes, D. M., Richards, T. A., & Talbot, N. J. (2007). Insights from sequencing fungal and oomycete genomes: what canwe learn about plant disease and the evolution of pathogenicity? Plant Cell, 19, 3318–3326.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R. D., Saparno, A., Blackwell, B., Anoop, V., Gleddie, S., Tinker, N. A., et al. (2008). Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics, 8, 2256–2265.

    Article  CAS  PubMed  Google Scholar 

  • Tian, M. Y., Huitema, E., Da Cunha, L., Torto-Alalibo, T., & Kamoun, S. (2004). A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. Journal Biological Chemistry, 279, 26370–26377.

    Article  CAS  Google Scholar 

  • Torto, T. A., Li, S., Styer, A., Huitema, E., Testa, A., Gow, N. A., et al. (2003). EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Research, 13, 1675–1685.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H., Aerts, A., et al. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science, 313, 1261–1266.

    Article  CAS  PubMed  Google Scholar 

  • Valent, B., & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus Magnaporthe grisea. Annual Review of Phytopathology, 29, 443–467.

    Article  CAS  PubMed  Google Scholar 

  • Washburn, M. P., Wolters, D., & Yates, J. R., III. (2001). Large scale analysis of yeast proteome by multidimensional protein identification technology. Nature Biotechnology, 19(3), 242–247.

    Article  CAS  PubMed  Google Scholar 

  • Whisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J. G., Gilroy, E. M., et al. (2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 450, 115–118.

    Article  CAS  PubMed  Google Scholar 

  • Yajima, W., & Kav, N. N. V. (2006). The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics, 6, 5995–6007.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Chen, J., Liu, L., Wang, X., Huang, X., & Zhai, Y. (2007). Proteomics associated with virulence differentiation of Curvularia lunata in maize in China. Journal of Integrated Plant Biology, 49, 487–496.

    Article  CAS  Google Scholar 

  • Zhou, W., Kolb, F. L., & Riechers, D. E. (2005). Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome, 48, 770–780.

    CAS  PubMed  Google Scholar 

  • Zhou, W., Eudes, F., & Laroche, A. (2006). Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics, 6, 4599–4609.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NSERC grants to Drs. S. Banniza and Y-D. Wei, and the National Basic Research Programme of China (973 Programme) to Dr. Y-L. Peng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Liang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadauria, V., Banniza, S., Wang, LX. et al. Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts. Eur J Plant Pathol 126, 81–95 (2010). https://doi.org/10.1007/s10658-009-9521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9521-4

Keywords

Navigation