Skip to main content
Log in

Perspectives in Metabolic Engineering: Understanding Cellular Regulation Towards the Control of Metabolic Routes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and “green chemistry”. Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bailey, J. E. (1991). Toward a science of metabolic engineering. Science, 252, 1668–1674.

    Article  CAS  Google Scholar 

  2. Hutchinson, C. R. (1998). Combinatorial biosynthesis for new drug discovery. Current Opinion in Microbiology, 1(3), 319–329.

    Article  CAS  Google Scholar 

  3. Jacobson, J. R., & Khosla, C. (1998). New directions in metabolic engineering. Current Opinion in Chemical Biology, 2, 133–137.

    Article  Google Scholar 

  4. Keasling, J. D. (2010). Manufacturing molecules through metabolic engineering. Science, 330, 1355–1358.

    Article  CAS  Google Scholar 

  5. Nerem, R. M. (1991). Cellualr engineering. Annals of Biomedical Engineering, 19, 529–545.

    Article  CAS  Google Scholar 

  6. Koffas, M., Roberge, C., Lee, K., & Stephanopoulos, G. (1999). Metabolic engineering. Annual Review of Biomedical Engineering, 01, 535–557.

    Article  CAS  Google Scholar 

  7. Price, N. D., et al. (2004). Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Reviews Microbiology, 2, 886–897.

    Article  CAS  Google Scholar 

  8. Kosla, C., & Keasling, J. D. (2003). Metabolic engineering for drug discovery and development. Nature Reviews, 2, 1019–1024.

    Article  Google Scholar 

  9. Van der Oost, J., Ciaramella, M., Moracci, M., Pisani, F. M., Rossi, M., & de Vos, W. M. (1998). Molecular biology of hyperthermophillic Archaea. Advances in Biochemical Engineering/Biotechnology, 61, 87–115.

    Article  Google Scholar 

  10. Colon, G. E., Nguyen, T. T., Jetten, M. S. M., Sinskey, A. J., & Stephanopoulos, G. (1995). Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Applied Microbiology and Biotechnology, 43, 482–488.

    Article  CAS  Google Scholar 

  11. MacQuitty, J. J. (1988). Impact of biotechnology on the chemical industry. ACS Symposium Series, 362, 221–233.

    Article  Google Scholar 

  12. Stephanopoulos, G. (1999). Metabolic fluxes and metabolic engineering. Metabolic Engineering, 1, 1–11.

    Article  CAS  Google Scholar 

  13. Nielson, J. (1994). Physiological engineering-towards a new science, pp. 30–38. Proc. The 1994 IChemE Research Event, London.

  14. Cameron, D. C., & Tong, I. T. (1993). Cellular and metabolic engineering. Applied Biochemistry and Biotechnology, 38, 105–140.

    Article  CAS  Google Scholar 

  15. Hutchinson, C. R. (1994). Drug synthesis by genetically engineered microorganisms. Bio/Technology, 12, 375–380.

    Article  CAS  Google Scholar 

  16. Craig, G. M., Newman, D. J., & Snader, K. M. (1997). Natural products in drug discovery and development. Journal of Natural Products, 60, 52–60.

    Article  Google Scholar 

  17. McCaskill, D., & Croteau, R. (1997). Prospects for the bioengineering of isoprenoid biosynthesis. Advances in Biochemical Engineering/Biotechnology, 55, 107–146.

    Article  CAS  Google Scholar 

  18. Yarmush, M. L., & Berthiaume, F. (1997). Metabolic engineering and human disease. Nature Biotechnology, 15, 525–528.

    Article  CAS  Google Scholar 

  19. Maynard, N. D., Gutschow, M. V., Birch, E. W., & Professor, M. W. C. (2010). The virus as metabolic engineering. Biotechnology Journal, 5, 686–694.

    Article  CAS  Google Scholar 

  20. Lee, S. Y., Kim, H. U., Park, J. H., Park, J. M., & Kim, T. Y. (2009). Metabolic engineering of microorganisms: general strategies and drug production. Drug Discovery Today, 14, 81–89.

    Article  Google Scholar 

  21. Zhang, F., & Keasling, J. (2011). Biosensors and their applications in microbial metabolic engineering. Trends in Microbiology, 19, 323–329.

    Article  CAS  Google Scholar 

  22. Shaw, A. J., Podkaminer, K. K., Desai, S. G., Bardsley, J. S., Rogers, S. R., Thorne, P. G., Hogsetti, D. A., & Lynd, L. R. (2008). Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proceedings of the National Academy of Sciences USA, 105, 13669–13774.

    Google Scholar 

  23. Haggart, C. R., Bartel, J. A., & Saucerman, J. J. (2011). Whole-genome metabolic network reconstruction and constraint-based modeling. Methods in Enzymology, 500, 411–433.

    Article  CAS  Google Scholar 

  24. Chavali, A. K., D’Auria, K. M., & Hewlett, E. L. (2012). A metabolic network approach for the identification and prioritization of antimicrobial drug targets. Trends in Microbiology, 20, 113–123.

    Article  CAS  Google Scholar 

  25. Stephanopoulos, G., & Simpson, T. W. (1997). Flux amplification in complex metabolic networks. Chemical Engineering Science, 52, 2607–2627.

    Article  CAS  Google Scholar 

  26. Stephanopoulos, G., & Valino, J. J. (1991). Network rigidity and metabolic engineering in metabolite overproduction. Science, 252, 1675–1681.

    Article  CAS  Google Scholar 

  27. Kacser, H., & Burns, J. A. (1973). The control of flux. Symposia of the Society for Experimental Biology, 27, 65–104.

    CAS  Google Scholar 

  28. Lee, J. M., Gianchandani, E. P., & Papin, J. A. (2006). Flux balance analysis in the era of metabolomics. Briefings in Bioinformatics, 7, 140–150.

    Article  Google Scholar 

  29. Chang, M. C., & Keasling, J. D. (2006). Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2, 674–681.

    Article  CAS  Google Scholar 

  30. Palsson, B. (2006). Systems biology: properties of reconstructed networks. Cambridge University Press.

  31. Delgado, J., & Liao, J. C. (1992). Metabolic control analysis from transient metabolite concentrations. Biochemical Journal, 282, 919–927.

    CAS  Google Scholar 

  32. Nielsen, J., & Jorgensen, H. S. (1995). Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. Biochemical Journal, 321, 133–138.

    Google Scholar 

  33. Pissarra, P. N., Nielsen, J., & Bazin, M. J. (1996). Pathway kinetics and metabolic control analysis of high yielding strain of Penicillium chrysogenum during fed-batch cultivation. Biotechnology and Bioengineering, 51, 168–176.

    Article  Google Scholar 

  34. Petterson, G. (1996). Errors associated with experimental determination of enzyme flux control coefficients. Journal of Theoretical Biology, 179, 191–197.

    Article  Google Scholar 

  35. Rivera, S. J. B., Bennett, G. N., & San, K. Y. (2001). The effect of increasing NADH availability on the redistribution of metabolic fluxes in E. coli. Chemostat Cultures. Metabolic Engineering, 4, 230–237.

    Article  Google Scholar 

  36. Yang, Y. T., Bennett, G. N., & San, K. Y. (1998). Genetic and metabolic engineering. Electronic Journal of Biotechnology, 1, 3.

    Article  Google Scholar 

  37. Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403–434.

    Article  CAS  Google Scholar 

  38. Mavelli, F. (2012). Stochastic simulations of minimal cells: the Rivocell models. BMC Bioinformatics, 13, S10.

    Article  CAS  Google Scholar 

  39. Carletti, T., & Filisetti, A. (2012). The stochastic evolution of a protocell: the Gillespie algorithm in a dynamically varying volume. Computational and Mathematical Methods in Medicine, 20, 423627.

    Google Scholar 

  40. Huang, D., Jia, X., Wen, J., Wang, G., Yu, G., Caiyin, Q., & Chen, Y. (2011). Metabolic flux analysis and principal nodes identification for daptomycin production improvement by Streptomyces roseosporus. Applied Biochemistry and Biotechnology, 7-8, 1725–1739.

    Article  Google Scholar 

  41. Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., & Sauer, U. (2012). Multidimensional optimality of microbial metabolism. Science, 6081, 601–604.

    Article  Google Scholar 

  42. Ay, F., Dang, M., & Kahveci, T. (2012). Metabolic network alignment in large scale by network compression (13): Suppl 3:S2.

  43. Kern, A., Tilley, E., Hunter, I. S., Legisa, M., & Glieder, A. (2007). Engineering primary metabolic pathways of industrial microorganisms. J. Biotech, 1, 6–29.

    Google Scholar 

  44. Orman, M. A., Berthiaume, F., Androulakis, I. P., & Lerapetritou, M. G. (2011). Advanced stoichiometric analysis of metabolic networks of mammalian systems. Critical Reviews in Biomedical Engineering, 6, 511–534.

    Article  Google Scholar 

  45. Wahrheit, J., Nicolae, A., & Heinzle, E. (2011). Eukaryotic metabolism: measuring compartment fluxes. Biotechnology Journal, 9, 1071–1085.

    Article  Google Scholar 

  46. Nookaew, I., Olivares-Hernandez, R., Bhumiratana, S., & Nielsen, J. (2011). Genome-scale metabolic models of S. cerevisiae. Methods in Molecular Biology, 759, 445–463.

    Article  CAS  Google Scholar 

  47. Noh, K., & Wiechert, W. (2011). The benefit of being transient: isotope-based metabolic flux analysis at the short time scale. Applied Microbiology and Biotechnology, 5, 1247–1265.

    Google Scholar 

  48. Price, N. D., & Kim, P. J. (2010). Macroscopic kinetic effect of cell to cell variation in biochemical reactions. Physical Review Letters, 104, 148103.

    Article  Google Scholar 

  49. Kravchenko-Balasha, N., Levitzki, A., Goldstein, A., Rotter, V., Gross, A., Remacle, R., & Levine, R. D. (2012). On the fundamental structure of gene networks in living cells. Proceedings of the National Academy of Sciences USA, 12, 4702–4707.

    Article  Google Scholar 

  50. Kravchenko-Balasha, N., LRemacle, F., Gross, A., Rotter, V., Levitzki, A., & Levine, R. D. (2011). Convergence of logic of cellular regulation in different premalignant cells by an information theoretical approach. BMC Systems Biology, 5, 42.

    Article  Google Scholar 

  51. Han, M. J., Lee, S. Y., Koh, S. T., Noh, S. G., & Han, W. H. (2010). Biotechnological applications of microbial proteomes. Journal of Biotechnology, 4, 314–319.

    Google Scholar 

  52. Jensen, P.R., & Hammer, K. (1998). Artificial promoters for metabolic optimization (2–3):191–5.

  53. Weeks, A. M., & Chang, M. C. (2011). Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry, 24, 5404–5418.

    Article  Google Scholar 

  54. Chemlet, J. A., & Koffas, M. A. (2008). Metabolic engineering for plant natural product biosynthesis in microbes. Current Opinion in Biotechnology, 6, 597–605.

    Article  Google Scholar 

  55. Mitchell, W. (2011). Natural products from synthetic biology. (4):505–15.

  56. White, N. J. (2008). Qinghaosu (Artemisinin): the price of success. Science, 18, 330–334.

    Article  Google Scholar 

  57. Madduri, K., Kennedy, J., Rivola, G., Inventi-Solari, A., & Fillippini, S. (1998). Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of S. peucetius. Nature Biotechnology, 16, 69–74.

    Article  CAS  Google Scholar 

  58. Nicolaou, K.C., Yang, Z., Liu, J.J., & Ueno, H. (1994). Total synthesis of taxol (367):630–634.

  59. McDaniel, R., Ebert-Khosla, S., Hopwood, D. A., & Khosla, C. (1993). Engineering biosynthesis of novel polyketides. Science, 262, 1547–1550.

    Article  Google Scholar 

  60. Pitera, D. J., Paddon, C. J., Newman, C. J., & Keasling, J. D. (2007). Balancing a heterologous mevalonate pathway for improved isoprenoid production in E. Coli. Metabolic Engineering, 9, 193–207.

    Article  CAS  Google Scholar 

  61. Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D., & Keasling, J. D. (2003). Engineering a mevalonate pathway in E. coli for production of terpenoids. Nature Biotechnology, 21, 796–802.

    Article  CAS  Google Scholar 

  62. Leonard, E., & Koffas, M. A. (2007). Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by E. Coli. Applied and Environmental Microbiology, 73, 7246–7251.

    Article  CAS  Google Scholar 

  63. Jung, W. S., Lee, S. K., Hong, J. S. J., Park, S. R., Jeong, S. J., Han, A. R., Sohng, J. K., Kim, B. G., Choi, C. Y., & Sherman, D. H. (2006). Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Applied Genetics and Molecular Biotechnology, 72, 763–769.

    Article  CAS  Google Scholar 

  64. Lum, A. M., Huang, J., Hutchinson, C. R., & Kao, C. M. (2004). Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metabolic Engineering, 3, 186–196.

    Article  Google Scholar 

  65. Butler, A. R., & Cundliffe, E. (2001). Influence of dimethylsulfoxide on tylosin production in Streptomyces fradiae. Journal of Industrial Microbiology and Biotechnology, 27, 46–51.

    Article  CAS  Google Scholar 

  66. Shang, K., Hu, Y., Zhu, C., & Zhu, B. (2008). Production of 4′-epidaunorubicun by metabolic engineering of Streptomyces coeruleorubidus strain SIPI-1482. World Journal of Microbiology and Biotechnology, 24, 1107–1113.

    Article  CAS  Google Scholar 

  67. Pfiefer, B. A., Admiraal, S. J., Gramajo, H., Cane, D. E., & Khosla, C. (2001). Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science, 291, 1790–1792.

    Article  Google Scholar 

  68. Vadali, R. V., Bennett, G. N., & San, K. Y. (2004). Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in E. coli. Metabolic Engineering, 2, 133–139.

    Article  Google Scholar 

  69. Kinoshita, S., Nakayama, K., & Kitada, S. (1958). l-Lysine production using microbial auxotroph. J. Gen. Appl. Microbiol.

  70. Dikshit, K. L., & Webster, D. A. (1988). Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in E. Coli. Gene, 70, 377–386.

    Article  CAS  Google Scholar 

  71. Brabetz, W., Liebl, W., & Schleifer, K. H. (1991). Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Archives of Microbiology, 155, 607–612.

    Article  CAS  Google Scholar 

  72. Cameron, D. C., Altaras, N. E., Hoffman, M. L., & Shaw, A. J. (1998). Metabolic engineering of propanediol pathways. Biotechnology Progress, 14, 116–125.

    Article  CAS  Google Scholar 

  73. Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X., & Bailey, J. (1998). Controlled proliferation by multi-gene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nature Biotechnology, 16, 468–472.

    Article  CAS  Google Scholar 

  74. Dunlop, M. J., Keasling, J. D., & Mukhopadhyay, A. (2010). A model for improving microbial biofuel production using a synthetic feedback loop. Systems and Synthetic Biology, 2, 95–104.

    Article  Google Scholar 

  75. Salas, J. A., & Mendez, C. (1998). Genetic manipulation of antitumor-agent biosynthesis to produce novel drugs. Trends in Biotechnology, 16, 475–482.

    Article  CAS  Google Scholar 

  76. Zadran, S., Qin, Q., Bi, X., Zadran, H., Kim, Y., Foy, M. R., Thompson, R., & Baudry, M. (2009). 17-Beta-estradiol increases neuronal excitability through MAP kinase-induced calpain activation. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21936–21941.

    Article  Google Scholar 

Download references

Conflict of interest

Authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohila Zadran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadran, S., Levine, R.D. Perspectives in Metabolic Engineering: Understanding Cellular Regulation Towards the Control of Metabolic Routes. Appl Biochem Biotechnol 169, 55–65 (2013). https://doi.org/10.1007/s12010-012-9951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9951-x

Keywords

Navigation