Skip to main content

Screening, Optimization and Assembly of Key Pathway Enzymes in Metabolic Engineering

  • Chapter
  • First Online:
Biocatalysis

Abstract

Metabolic engineering is an enabling technology for producing chemicals, pharmaceuticals, and fuels in a green and sustainable manner. Enzymes are key catalysts for metabolic reactions for the synthesis of target product. In this chapter, we initially discuss enzyme research in metabolic engineering, fueled by screening the enzymes of key biochemical pathways from different organisms for an enhanced production. Next, the optimization of key pathway enzymes by feedback inhibition removal, catalytic efficiency improvement, and substrate specificity alteration are discussed. Finally, assembling of the key pathway enzymes for balancing and strengthening synthetic pathways is discussed, including fusion expression of key enzymes, synthetic scaffold-guided enzyme co-localization, and compartmentalization engineering. The systematic summary and discussion of screening, optimization and assembling of key pathway enzymes in metabolic engineering may facilitate metabolic engineers to further combine protein engineering with metabolic engineering for eliminating rate-limiting steps for improved production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2006) Tuning genetic control through promoter engineering (vol 102, pg 12678, 2005). Proc Natl Acad Sci U S A 103(8):3006–3006

    Article  CAS  Google Scholar 

  • Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A (2006) Large-scale identification of protein–protein interaction of Escherichia coli K-12. Genome Res 16(5):686–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31(4):335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed 54(11):3328–3350

    Article  CAS  Google Scholar 

  • Castellana M, Wilson MZ, Xu Y, Joshi P, Cristea IM, Rabinowitz JD, Gitai Z, Wingreen NS (2014) Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol 32(10):1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Chen Z, Zheng P, Sun J, Zeng AP (2012) Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Appl Microbiol Biotechnol 97(7):2939–2949

    Article  PubMed  Google Scholar 

  • Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng A-P (2014a) Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol 80(4):1388–1393

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Rappert S, Zeng A-P (2014b) Rational design of allosteric regulation of homoserine dehydrogenase by a non-natural inhibitor L-lysine. ACS Synth Biol 4(2):126–131

    Article  PubMed  Google Scholar 

  • Chen X, Zhou J, Zhang L, Pu Z, Liu L, Shen W, Fan Y (2018) Development of an Escherichia coli-based biocatalytic system for the efficient synthesis of N-acetyl-D-neuraminic acid. Metab Eng 47:374–382

    Article  CAS  PubMed  Google Scholar 

  • Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY, Lebar T, Turnšek J, Tomšič N, Avbelj M, Koprivnjak T (2012) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40(4):1879–1889

    Article  CAS  PubMed  Google Scholar 

  • Delebecque CJ, Silver PA, Lindner AB (2012) Designing and using RNA scaffolds to assemble proteins in vivo. Nat Protoc 7(10):1797–1807

    Article  CAS  PubMed  Google Scholar 

  • DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE (2015) An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11(7):465–471

    Article  CAS  PubMed  Google Scholar 

  • Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, Running JA, Kunesh CA, Song L, Jerrell TA (2005) Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab Eng 7(3):201–214

    Article  CAS  PubMed  Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759

    Article  CAS  PubMed  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerosa L, Sauer U (2011) Regulation and control of metabolic fluxes in microbes. Curr Opin Biotechnol 22(4):566–575

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Janga SC, Babu M, Díazmejía JJ, Butland G, Yang W, Pogoutse O, Guo X, Phanse S, Wong P (2009) Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 7(4):e96

    Article  PubMed  Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8(6):536–546

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Jung S-C, Kang KH, Song J-J, Kim SC (2013) Improved production of l-threonine in Escherichia coli by use of a DNA scaffold system. Appl Environ Microbiol 79(3):774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Mantell J, Hodgson L, Alibhai D, Fletcher JM, Brown IR, Frank S, Xue W-F, Verkade P, Woolfson DN, Warren MJ (2018) Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm. Nat Chem Biol 14(2):142–147

    Article  CAS  PubMed  Google Scholar 

  • Leonard E, Ajikumar PK, Thayer K, Xiao W-H, Mo JD, Tidor B, Stephanopoulos G, Prather KL (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci U S A 107(31):13654–13659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhu Y, Ma W, Shin H-D, Li J, Liu L, Du G, Chen J (2014) Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng 24:61–69

    Article  CAS  PubMed  Google Scholar 

  • McNerney MP, Watstein DM, Styczynski MP (2015) Precision metabolic engineering: the design of responsive, selective, and controllable metabolic systems. Metab Eng 31:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164(6):1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Nowroozi FF, Baidoo EE, Ermakov S, Redding-Johanson AM, Batth TS, Petzold CJ, Keasling JD (2013) Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol 98(4):1567–1581

    Article  PubMed  Google Scholar 

  • Paddon C, Westfall P, Pitera D, Benjamin K, Fisher K, McPhee D, Leavell M, Tai A, Main A, Eng D (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532

    Article  CAS  PubMed  Google Scholar 

  • Philp JC, Ritchie RJ, Allan JE (2013) Biobased chemicals: the convergence of green chemistry with industrial biotechnology. Trends Biotechnol 31(4):219–222

    Article  CAS  PubMed  Google Scholar 

  • Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Francakoh J, Pakala SB, Phanse S, Ceol A (2014) The binary protein-protein interaction landscape of Escherichia coli. Nat Biotechnol 32(3):285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez GM, Tashiro Y, Atsumi S (2014) Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10(4):259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thodey K, Galanie S, Smolke CD (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 10(10):837–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-HP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29(6):715–725

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128(40):13030–13031

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu Y, Liu L, Wang M, Li J, Du G, Chen J (2018) Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis. Biotechnol Bioeng 115(9):2217–2231

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134(6):3234–3241

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Liu, L. (2019). Screening, Optimization and Assembly of Key Pathway Enzymes in Metabolic Engineering. In: Husain, Q., Ullah, M. (eds) Biocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-25023-2_8

Download citation

Publish with us

Policies and ethics