Skip to main content
Log in

Effect of Synergistic Inducement on the Production of Laccase by a Novel Shiraia bambusicola Strain GZ11K2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, an easily detectable method was employed for screening laccase-producing microorganisms by using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) as laccase secretion indicator. A novel laccase-producing strain was isolated and identified as Shiraia bambusicola Henn. strain GZ11K2 according to the morphological characteristics and the comparison of internal transcribed spacer ribosomal DNA gene sequences. In further investigation, the production of laccase by S. bambusicola GZ11K2 was greatly enhanced by the nontoxic inducers of copper sulfate and rhodamine B. Copper and rhodamine B were added into the cultivation medium at 24 and 12 h, respectively, and the maximum laccase production was obtained. Under the induction of 2.0 mM copper sulfate and 35 μM rhodamine B, an increment of about 80 times of laccase activity compared with that in the inducer-free medium and about 20 times compared with that in the single copper-supplemented medium was observed. Compared with other species, S. bambusicola GZ11K2 exhibits better laccase-producing characteristics with an activity of 16,400 U/L after 108 h, suggesting its potential ability for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mayer, A. M., & Staples, R. C. (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60, 551–565.

    Article  CAS  Google Scholar 

  2. Kunamneni, A., Camarero, S., Garcia-Burgos, C., Plou, F., Ballesteros, A., & Alcalde, M. (2008). Engineering and applications of fungal laccases for organic synthesis. Microbial Cell Factories, 7, 1–17.

    Article  Google Scholar 

  3. Tinoco, R., Acevedo, A., Galindo, E., & Serrano-Carreon, L. (2011). Increasing Pleurotus ostreatus laccase production by culture medium optimization and copper/lignin synergistic induction. Journal of Industrial Microbiology & Biotechnology, 38, 531–540.

    Article  CAS  Google Scholar 

  4. Leonowicz, A., Cho, N. S., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., et al. (2001). Fungal laccase: properties and activity on lignin. Journal of Basic Microbiology, 41, 185–227.

    Article  CAS  Google Scholar 

  5. Baldrian, P. (2006). Fungal laccases—occurrence and properties. FEMS Microbiology Reviews, 30, 215–242.

    Article  CAS  Google Scholar 

  6. Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry (Mosc), 72, 1136–1150.

    Article  CAS  Google Scholar 

  7. Elisashvili, V., Kachlishvili, E., Khardziani, T., & Agathos, S. N. (2010). Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology, 37, 1091–1096.

    Article  CAS  Google Scholar 

  8. Hu, Y., Cai, Y., Liao, X., Ma, W., Li, Z., & Zhang, D. (2011). Optimization of Shiraia bambusicola liquid-state fermentation for laccase production. Journal of Food Science and Biotechnology, 05, 773–776.

    Google Scholar 

  9. Liu, Z., Zhang, D., Hua, Z., Li, J., Du, G., & Chen, J. (2009). A newly isolated Paecilomyces sp. WSH-L07 for laccase production: isolation, identification, and production enhancement by complex inducement. Journal of Industrial Microbiology & Biotechnology, 36, 1315–1321.

    Article  CAS  Google Scholar 

  10. Tychanowicz, G., Souza, D., Souza, C., Kadowaki, M., & Peralta, R. (2006). Copper improves the production of laccase by the white-rot fungus Pleurotus pulmonarius in solid state fermentation. Brazilian Archives of Biology and Technology, 49, 699–704.

    Article  CAS  Google Scholar 

  11. Tavares, P. M., Coelho, A. Z., Coutinho, A. P., & Xavier, R. B. (2005). Laccase improvement in submerged cultivation: induced production and kinetic modeling. Journal of Chemical Technology and Biotechnology, 80, 669–676.

    Article  Google Scholar 

  12. Du, W., Han, Y., Liang, J., & Liang, Z. (2009). Isolation and determination of anamorph of Shiraia bambusicola. China Journal of Chinese Materia Medica, 34, 1640–1642.

    CAS  Google Scholar 

  13. Van Oorschot, C. A. N. (1980). A revision of Chrysosporium and allied genera. Studies in Mycology, 20, 1–89.

    Google Scholar 

  14. Liang, J. D., Han, Y. F., Zhang, J. W., Du, W., Liang, Z. Q., & Li, Z. Z. (2011). Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIFR-H49-1. Journal of Applied Microbiology, 110, 871–880.

    CAS  Google Scholar 

  15. Kumar, S., Tamura, K., & Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  17. Cheng, T. F., Jia, X. M., Ma, X. H., Lin, H. P., & Zhao, Y. H. (2004). Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses. Journal of Basic Microbiology, 445, 339–350.

    Article  Google Scholar 

  18. Galhaup, C., Wagner, H., Hinterstoisser, B., & Haltrich, D. (2002). Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme and Microbial Technology, 30, 529–536.

    Article  CAS  Google Scholar 

  19. Castermans, D., Somers, I., Kriel, J., Louwet, W., Wera, S., Versele, M., et al. (2012). Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Research, 22, 1058–1077.

    Article  CAS  Google Scholar 

  20. Rigling, D., Heiniger, U., & Hohl, H. R. (1989). Reduction of laccase activity in dsRNA-containing hypovirulent strains of Cryphonectria (Endothia) parasitica. Physiology and Biochemistry, 79, 219–223.

    CAS  Google Scholar 

  21. Malhotra, K., Sharma, P., & Capalash, N. (2004). Copper and dyes enhance laccase production in γ-proteobacterium JB. Biotechnology Letters, 26, 1047–1050.

    Article  CAS  Google Scholar 

  22. Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., et al. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme and Microbial Technology, 44, 426–433.

    Article  CAS  Google Scholar 

  23. Zhang, Y., Sun, S., Hu, K., & Lin, X. (2012). Improving production of laccase from novel basidiomycete with response surface methodology. African Journal of Biotechnology, 11, 7009–7015.

    CAS  Google Scholar 

  24. Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., et al. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresource Technology, 114, 735–739.

    Article  CAS  Google Scholar 

  25. Gnanamani, A., Jayaprakashvel, M., Arulmani, M., & Sadulla, S. (2006). Effect of inducers and culturing processes on laccase synthesis in Phanerochaete chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes. Enzyme and Microbial Technology, 38, 1017–1021.

    Article  CAS  Google Scholar 

  26. Kittl, R., Gonaus, C., Pillei, C., Haltrich, D., & Ludwig, R. (2012). Constitutive expression of Botrytis aclada laccase in Pichia pastoris. Bioengineered, 3, 1–3.

    Article  Google Scholar 

  27. Solé, M., Müller, I., Pecyna, M. J., Fetzer, I., Harms, H., & Schlosser, D. (2012). Differential regulation by organic compounds and heavy metals of multiple laccase genes in the aquatic hyphomycete clavariopsis aquatica. Applied and Environmental Microbiology, 78, 4732–4739.

    Article  Google Scholar 

  28. Yang, Y., Fan, F., Zhuo, R., Ma, F., Gong, Y., Wan, X., et al. (2012). Expression of laccase gene from white rot fungus in Pichia pastoris can enhance the resistance of yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. American Society for Microbiology, 15. doi:10.1128/AEM.00218-12.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (no. 30960004), Natural Science Foundation of Guizhou Province (2011-3094, 2010-4008, 2009-7012-1, 2011-204), and Natural Science Foundation of Guizhou University (2007-035, 2010-102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Yu or Yanfeng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, W., Sun, C., Yu, J. et al. Effect of Synergistic Inducement on the Production of Laccase by a Novel Shiraia bambusicola Strain GZ11K2. Appl Biochem Biotechnol 168, 2376–2386 (2012). https://doi.org/10.1007/s12010-012-9943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9943-x

Keywords

Navigation