Skip to main content
Log in

Siderophore-Mediated Iron Uptake Promotes Yeast–Bacterial Symbiosis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, siderophore produced by the marine yeast Aureobasidium pullulans was characterized as hydroxamate by chemical and bioassays. The hydroxamate assignment was supported by the appearance of peaks at 1,647.21–1,625.99 cm−1 and at 1,435.04 cm−1 in the infrared spectrum. The purified siderophore exhibited specific growth-promoting activity under iron-limited conditions for siderophore auxotrophic probiotic bacteria. Cross-utilization of siderophore indicates a symbiotic relationship between the yeast A. pullulans and the selected probiotic bacterial strains. Statistical optimization of medium components for improved siderophore production in A. pullulans was depicted by response surface methodology. The shift in UV–Vis spectroscopy indicates the photoreactive property and subsequent oxidative cleavage of purified siderophore on exposure to sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dhungana, S., Harrington, J. M., Gebhardt, P., Möllmann, U., & Crumbliss, A. L. (2007). Iron chelation equilibria, redox, and siderophore activity of a saccharide platform ferrichrome analogue. Inorganic Chemistry, 46, 8362–8371.

    Article  CAS  Google Scholar 

  2. Quatrini, R., Jedlicki, E., & Holmes, D. S. (2005). Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. Journal of Industrial Microbiology and Biotechnology, 32, 606–614.

    Article  CAS  Google Scholar 

  3. Merkofer, M., Kissner, R., Hider, R. C., Brunk, U. T., & Koppenol, W. H. (2006). Fenton chemistry and iron chelation and physiologically relevant conditions: electrochemistry and kinetics. Chemical Research in Toxicology, 19, 1263–1269.

    Article  CAS  Google Scholar 

  4. Winkelmann, G. (2002). Microbial siderophore-mediated transport. Biochemical Society Transactions, 30, 691–696.

    Article  CAS  Google Scholar 

  5. Chi, Z. M., Liu, G., Zhao, S., Li, J., & Peng, Y. (2010). Marine yeasts as biocontrol agents and producers of bioproducts. Applied Microbiology and Biotechnology, 86, 1227–1241.

    Article  CAS  Google Scholar 

  6. Li, J. F., & Chi, Z. M. (2004). Siderophores from marine microorganisms and their applications. Journal of Ocean University of China, 3, 40–47.

    Article  Google Scholar 

  7. de Hoog, G. S. (1993). Evolution of black yeasts: possible adaption to the human host. Antonie Van Leeuwenhoek, 63, 105–109.

    Article  Google Scholar 

  8. Chi, Z. M., Wang, F., Chi, Z., Yue, L., Liu, G., & Zhang, T. (2009). Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology, 82, 793–804.

    Article  CAS  Google Scholar 

  9. Liu, J., Liu, Z., Chi, Z. M., Zhang, L., & Zhang, D. (2009). Intraspecific diversity of Aureobasidium pullulans strains from different marine environments. Journal of Ocean University of China, 8, 241–246.

    Article  Google Scholar 

  10. Johnson, L. (2008). Iron and siderophores in fungal–host interactions. Mycological Research, 112, 170–183.

    Article  CAS  Google Scholar 

  11. Ratledge, C., & Dover, L. G. (2000). Iron metabolism in pathogenic bacteria. Annual Review of Microbiology, 54, 881–941.

    Article  CAS  Google Scholar 

  12. Hartmann, A., & Braun, V. (1980). Iron transport in Escherichia coli: uptake and modification of ferrichrome. Journal of Bacteriology, 143, 246–255.

    CAS  Google Scholar 

  13. West, S. A., & Buckling, A. (2003). Cooperation, virulence and siderophore production in bacterial parasites. Proceedings of the Royal Society of London, 270, 37–44.

    Article  Google Scholar 

  14. Noordman, W. H., Reissbrodt, R., Bongers, R. S., Rademaker, J. L. W., Bockelmann, W., & Smit, G. (2006). Growth stimulation of Brevibacterium sp. by siderophores. Journal of Applied Microbiology, 101, 637–646.

    Article  CAS  Google Scholar 

  15. Amin, S. A., Green, D. H., Mark, H. C., Kupper, F. C., Sunda, W. G., & Carrano, C. J. (2009). Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proceedings of the National Academy of Sciences, 106, 17071–17076.

    Article  CAS  Google Scholar 

  16. Yarrow, D. (1998). Methods for the isolation, maintenance, classification and identification of yeasts. In C. P. Kurtzman & J. W. Fell (Eds.), The yeasts: a taxonomic study (4th ed., pp. 77–100). Amsterdam: Elsevier Science BV.

    Chapter  Google Scholar 

  17. Wang, L., Yue, L. X., Chi, Z. M., & Wang, X. H. (2008). Marine killer yeasts active against the pathogenic yeast strain in crab (Portunus trituberculatus). Disease and Aquatic Organisms, 80, 211–218.

    Article  CAS  Google Scholar 

  18. Thanh, V. N., Van Dyk, M. S., & WingWeld, M. J. (2002). Debaryomyces mycophilus sp. nov., a siderophore-dependent yeast isolated from woodlice. FEMS Yeast Research, 2, 415–427.

    CAS  Google Scholar 

  19. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  20. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  21. Wang, W. L., Chi, Z. M., Chi, Z., Li, J., & Wang, X. H. (2009). Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresource Technology, 100, 2639–2641.

    Article  CAS  Google Scholar 

  22. Payne, S. M. (1994). Detection, isolation and characterization of siderophores. Methods in Enzymology, 235, 329–344.

    Article  CAS  Google Scholar 

  23. Deneer, H. G., & Boychuk, I. (1993). Reduction of iron by Listeria monocytogenes and other species of Listeria. Canadian Journal of Microbiology, 39, 480–485.

    Article  CAS  Google Scholar 

  24. Bas, D., & Boyaci, I. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78, 836–845.

    Article  CAS  Google Scholar 

  25. Chou, K. W., Norli, I., & Anees, A. (2010). Evaluation of the effect of temperature, NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response surface methodology (RSM). Bioresource Technology, 101, 8616–8622.

    Article  CAS  Google Scholar 

  26. Sayeed, R. Z., & Chincholkar, S. B. (2006). Purification of siderophores of Alkaligenes faecalis on Amberlite XAD. Bioresource Technology, 97, 1026–1029.

    Article  Google Scholar 

  27. Patel, A. K., Deshattiwar, M. K., Chaudhari, B. L., & Chincholkar, S. B. (2009). Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresource Technology, 100, 368–373.

    Article  CAS  Google Scholar 

  28. Macrellis, H. M., Trick, C. G., Rue, E. L., & Bruland, K. W. (2001). Collection and detection of natural Fe-binding ligands from seawater. Marine Chemistry, 76, 175–187.

    Article  CAS  Google Scholar 

  29. Winkelmann, G., Schmid, D. G., Nicholson, G., Jung, G., & Colquhoun, D. J. (2002). Bisucaberin-A dihydroxamate siderophore isolated from Vibrio salmonicida, an important pathogen of farmed Atlantic salmon (Salmo salar). BioMetals, 15, 153–160.

    Article  CAS  Google Scholar 

  30. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  31. Schrettl, M., Bignell, E., Kragl, C., Joechl, C., Rogers, T., Arst, H. N., Jr., et al. (2004). Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. The Journal of Experimental Medicine, 200, 1213–1219.

    Article  CAS  Google Scholar 

  32. Raymond, K. N., & Dertz, E. A. (2004). Biochemical and physical properties of siderophores. In J. H. Crosa, A. R. Mey, & S. M. Payne (Eds.), Iron transport in bacteria (pp. 3–17). Washington, DC: ASM Press.

    Google Scholar 

  33. Baakza, A., Dave, B. P., & Dube, H. C. (2004). Chemical nature, ligand denticity and quantification of fungal siderophores. Indian Journal of Experimental Biology, 42, 96–105.

    CAS  Google Scholar 

  34. Gatesoupe, F. J. (2007). Live yeasts in the gut: natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture, 267, 20–30.

    Article  Google Scholar 

  35. Cabaj, A., & Kosakowska, A. (2009). Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea. Microbiological Research, 164, 570–577.

    Article  CAS  Google Scholar 

  36. Murugappan, R. M., Aravinth, A., & Karthikeyan, M. (2011). Chemical and structural characterization of hydroxamate siderophore produced by marine Vibrio harveyi. Journal of Industrial Microbiology and Biotechnology, 38, 265–273.

    Article  CAS  Google Scholar 

  37. Singh, A., Mishra, A. K., Singh, S. S., Sarma, H. K., & Shukla, E. (2008). Influence of iron and chelator on siderophore production in Frankia strains nodulating Hippophae salicifolia D. Don. Journal of Basic Microbiology, 48, 104–111.

    Article  CAS  Google Scholar 

  38. Calvente, V., de Orellano, M. E. S., Benuzzi, D., & de Tosetti, M. I. S. (2001). Effects of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to control of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, 26, 226–229.

    Article  CAS  Google Scholar 

  39. Singh, A. K., Mehta, G., & Chhatpar, H. S. (2009). Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Letters in Applied Microbiology, 49, 708–714.

    Article  CAS  Google Scholar 

  40. Lopes, M. A., Gomes, D. S., Bello Koblitz, M. G., Pirovani, C. P., Cézar De Mattos Cascardo, J., Goes-Neto, A., et al. (2008). Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophthora perniciosa. Mycological Research, 112, 399–406.

    Article  CAS  Google Scholar 

  41. Jiang, L. (2010). Optimization of fermentation conditions for pullulan production by Aureobasidium pullulans using response surface methodology. Carbohydrate Polymer, 79, 414–417.

    Article  CAS  Google Scholar 

  42. Freibach, H. S., Yariv, S., Lapides, Y., Hadar, Y., & Chen, Y. (2005). Thermo-FTIR spectroscopic study of the siderophore ferrioxamine B: spectral analysis and stereochemical implications of iron chelation, pH and temperature. Journal of Agricultural and Food Chemistry, 53, 3434–3443.

    Article  Google Scholar 

  43. Barbeau, K., Rue, E. L., Bruland, K. W., & Butler, A. (2001). Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature, 413, 409–413.

    Article  CAS  Google Scholar 

  44. Martin, J. D., Ito, Y., Homann, V. V., Haygood, M. G., & Butler, A. (2006). Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. Journal of Biological Inorganic Chemistry, 11, 633–641.

    Article  CAS  Google Scholar 

  45. Harrison, F., Browning, L. E., Vos, M., & Buckling, A. (2006). Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biology, 4, 21.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank College management for providing necessary facilities. Financial assistance provided by UGC, CSIR, and MoEF is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RM. Murugappan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugappan, R., Karthikeyan, M., Aravinth, A. et al. Siderophore-Mediated Iron Uptake Promotes Yeast–Bacterial Symbiosis. Appl Biochem Biotechnol 168, 2170–2183 (2012). https://doi.org/10.1007/s12010-012-9926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9926-y

Keywords

Navigation