Skip to main content
Log in

Gibberellic Acid Increases Secondary Metabolite Production in Echinacea purpurea Hairy Roots

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Gibberellic acid (GA3) is reported to have diverse effects on hairy root cultures of many plant species; therefore, the effects of GA3 on the growth, secondary metabolite production (caffeic acid derivatives and lignin), phenylalanine ammonia lyase (PAL) activity, and free radical scavenging activity of light-grown Echinacea purpurea L. hairy roots were investigated. Eight concentrations of GA3, ranging from 0.005 to 1.0 μM, were added to shake flask cultures. The moderate GA3 concentration, 0.025 μM, resulted in the highest concentrations of cichoric acid, caftaric acid, and chlorogenic acid, as well as increased PAL activity, cell viability, and free radical scavenging activity, while higher and lower GA3 concentrations resulted in reduced levels compared to the control (lacking GA3). The moderate GA3 concentration also affected root morphogenesis; supplementation with 0.025 μM GA3 resulted in the development of thick, dense, purple-colored roots, while roots exposed to the higher and lower concentrations of GA3 were thin and off-white. This study demonstrates that supplementation with GA3 may be an excellent strategy to optimize the production of secondary metabolites from E. purpurea hairy root cultures; however, the GA3 concentration is a critical factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hudson, J. B. (2010). Journal Medicine Plants Research, 4, 2746–2752.

    Google Scholar 

  2. Liu, C. Z., Abbasi, B. H., Min, G., Murch, S. J., & Saxena, P. K. (2006). Journal Agriculturae Food Chemistry, 54, 8456–8460.

    Article  CAS  Google Scholar 

  3. Abbasi, B. H., Liu, R., Saxena, P. K., & Liu, C. Z. (2009). Journal Chemistry Technical Biotechnology, 84, 1697–1701.

    Article  CAS  Google Scholar 

  4. Lin, Z., Neamati, N., Zhao, H., Kiryu, Y., Turpin, J. A., Aberham, C., et al. (1999). Journal of Medicinal Chemistry, 42, 1401–1414.

    Article  CAS  Google Scholar 

  5. Jones, M. P. A., Saxena, P. K., & Murch, S. J. (2009). Engineering Life Science, 9, 205–210.

    Article  CAS  Google Scholar 

  6. Abbasi, B. H., Tian, C. L., Murch, S. J., Saxena, P. K., & Liu, C. Z. (2007). Plant Cell Reports, 26, 1367–1372.

    Article  CAS  Google Scholar 

  7. Biondi, S., Lenzi, C., Baraldi, R., & Bagni, N. (1997). Journal Plant Growth Regional, 16, 159–167.

    Article  CAS  Google Scholar 

  8. Bais, H. P., George, S. J., & Ravishankar, G. A. (2001). In Vitro Development Biology: Plant, 37, 293–299.

    Article  CAS  Google Scholar 

  9. Sharaf-Eldin, M. A., Schnitzler, W. H., Nitz, G., Razin, A. M., & El-Oksh, I. I. (2007). Science Horticultural, 111, 326–329.

    Article  CAS  Google Scholar 

  10. Smith, T. C., Weathers, P. J., & Cheetham, R. D. (1997). In Vitro Development Biology: Plant, 33, 75–79.

    Article  CAS  Google Scholar 

  11. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  12. Koukol, J., & Conn, E. E. (1961). Journal of Biological Chemistry, 236, 2692–2698.

    CAS  Google Scholar 

  13. Steponkus, P. L., & Lanphear, F. O. (1967). Plant Physiology, 42, 1423–1426.

    Article  CAS  Google Scholar 

  14. Harborne, J. B. (1958). Biochemistry Journal, 70, 22–28.

    CAS  Google Scholar 

  15. Goering, H. K. and Soest, P. J. (1970). In: Agricultural handbook No. 379, Forage fiber analyses: apparatus, reagents, procedures and some applications (pp. 20–36). Washington: USDA

  16. Rieger, M., & Litvin, P. (1999). Journal of Experimental Botany, 50, 201–209.

    CAS  Google Scholar 

  17. Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., & Weil, J. A. (2004). Food Chemistry, 84, 551–562.

    Article  CAS  Google Scholar 

  18. Ritchie, S., McCubbin, A., Ambrose, G., Kao, T.-H., & Gilroy, S. (1999). Plant Physiology, 120, 361–370.

    Article  CAS  Google Scholar 

  19. Ohkawa, H., Kamada, H., Suodo, H., & Harada, H. (1989). Journal of Plant Physiology, 134, 633–636.

    Article  CAS  Google Scholar 

  20. Tuna, A. L., Kaya, C., Dikilitas, M., & Higgs, D. (2007). Environmental and Experimental Botany, 62, 1–9.

    Article  Google Scholar 

  21. Teszlak, P., Gaal, K., & Nikfardjam, M. S. P. (2005). Analytica Chimica Acta, 543, 275–281.

    Article  CAS  Google Scholar 

  22. Baluska, R., Parker, J. S., & Barlow, P. A. (1993). Planta, 191, 149–157.

    Article  CAS  Google Scholar 

  23. Khan, M. I. (1980). Biologia Plantarum, 22, 401–403.

    Article  CAS  Google Scholar 

  24. Ilan, A., & Dougall, D. K. (1994). Journal Plant Growth Regulation, 13, 213–219.

    Article  CAS  Google Scholar 

  25. Shirley, B. W. (2001). Plant Physiology, 126, 485–493.

    Article  Google Scholar 

  26. Neves, G. Y. S., Marchiosi, R., Ferrarese, M. L. L., Siqueira, S., & Ferrarese-Filho, O. (2010). Journal of Agronomy and Crop Science, 196, 467–473.

    Article  CAS  Google Scholar 

  27. Singh, K., Kumar, S., Rani, A., Gulati, A., & Ahuja, P. S. (2009). Functional Integration Genomics, 9, 125–134.

    Article  CAS  Google Scholar 

  28. Ohlsson, A. B., & Berglund, T. (2001). Plant Cell, Tissue and Organ Culture, 64, 77–80.

    Article  CAS  Google Scholar 

  29. Gao, J., Zhang, S., Cai, F., Zheng, X., Lin, N., Qin, Y., et al. (2012). Molecular Biology Reports, 39, 3443–3452.

    Article  Google Scholar 

  30. Li, X., Li, S., & Lin, J. X. (2003). Plant Science, 164, 549–556.

    Article  CAS  Google Scholar 

  31. Boo, H. O., Chon, S. U., & Lee, S. Y. (2006). Journal Horticulture Science Technical, 81, 478–482.

    Google Scholar 

  32. Pellati, F., Benvenuti, S., Magro, L., Melegari, M., & Soragni, F. (2004). Journal of Pharmaceutical and Biomedical Analysis, 35, 289–301.

    Article  CAS  Google Scholar 

  33. Tsai, Y. L., Chiou, S. Y., Chan, K. C., Sung, J. M., & Lin, S. D. (2012). LWT-Food Science Technical, 46, 169–176.

    Article  CAS  Google Scholar 

  34. Taveira, M., Pereira, D. M., Sousa, C., Ferreres, F., Andrade, P. B., Martins, A., et al. (2009). Journal Agriculture Food Chemistry, 57, 1247–1252.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (no. 21150110459), the Knowledge Innovation Program of the Chinese Academy of Sciences (nos. YZ-06-03 & Y227051304), the Chinese Academy of Sciences Fellowship for Young International Scientists (no. 2011Y1GA01), the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (no. 2011T1G05), and the Gosling Research Institute for Plant Preservation, Canada. Abbasi BH acknowledges financial support of Higher Education Commission of Pakistan for providing financial assistance for PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Zhao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasi, B.H., Stiles, A.R., Saxena, P.K. et al. Gibberellic Acid Increases Secondary Metabolite Production in Echinacea purpurea Hairy Roots. Appl Biochem Biotechnol 168, 2057–2066 (2012). https://doi.org/10.1007/s12010-012-9917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9917-z

Keywords

Navigation