Skip to main content
Log in

Selective Liquefaction of Wheat Straw in Phenol and Its Fractionation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

For the first time, a method of phenol-selective liquefaction is proposed for the fractionation and multilevel conversion of lignocellulose. Through phenol-selective liquefaction, lignin and hemicellulose are liquefied, with large amounts of cellulose retained in the unliquefied residues. Using a phenol/straw ratio of 3 and a sulfuric acid concentration of 3 %, large amounts of hemicellulose (≥85 %) and lignin (≥70 %) can be liquefied at 100 °C in 30 min, with a high quantity of cellulose (≥80 %) retained. Unliquefied residues from selective liquefaction have higher susceptibility for enzymatic attack. Enzymatic hydrolyzation of residues can be as high as 65 % in 48 h with 40.7 FPU/g of dry materials, which can then be used to prepare sugar platform intermediates. The liquefied products of wheat straw are then resinified with formaldehyde in the presence of NaOH as a catalyst and synthesized into phenol formaldehyde-type resins reaching up to GB/T 14732-2006 standards. Phenol selective liquefaction, a new technology for the fractionation of lignocellulose, achieves effective fractionation and multilevel conversion of straw components. Hence, it is an important tool to achieve full utilization of biomass and high value-added conversion of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, H. Z. (2008). Biomass science and Engineering. Beijing: Chemistry Industry Press.

    Google Scholar 

  2. Chen, H. Z., & Li, D. M. (2006). Journal of Cellulose Science and Technology, 14, 62–68.

    Google Scholar 

  3. Chen, H. Z., & Wang, L. (2008). Chin. Journal of Process Engineering, 8, 676–681.

    CAS  Google Scholar 

  4. Li, H., Yuan, X., Zeng, G., Huang, D., Huang, H., Tong, J., You, Q., Zhang, J., & Zhou, M. (2010). Bioresource Technology, 101(8), 2860–2866.

    Article  CAS  Google Scholar 

  5. Jasiukaitytė, E., Kunaver, M., & Strlič, M. (2009). Cellulose, 16(3), 393–405.

    Article  Google Scholar 

  6. Lee, J. U., & Oh, Y. S. (2010). Turkey Journal of Agriculture, 34, 303–308.

    CAS  Google Scholar 

  7. Jena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. (2011). Bioresource Technology, 102(3), 3380–3387.

    Article  CAS  Google Scholar 

  8. Wang, M., Leitch, M., & Xu, C. C. (2009). Journal of Industrial and Engineering Chemistry, 15(6), 870–875.

    Article  CAS  Google Scholar 

  9. Tymchyshyn, M., & Xu, C. C. (2010). Bioresource Technology, 101(7), 2483–2490.

    Article  CAS  Google Scholar 

  10. Jin, Y., Ruan, X., Cheng, X., & Lü, Q. (2011). Bioresource Technology, 102(3), 3581–3583.

    Article  CAS  Google Scholar 

  11. Alma, M. H., & Basturk, M. A. (2006). Ind. Crops Production, 24, 171–176.

    Article  CAS  Google Scholar 

  12. Yu, F., Liu, Y., Pan, X., Lin, X., Liu, C., Chen, P., & Ruan, R. (2006). Applied Biochemistry and Biotechnology, 129–132, 574–85.

    Article  Google Scholar 

  13. Mun, S. P., & Jang, J. P. (2009). Journal of Industrial and Engineering Chemistry, 15, 743–747.

    Article  CAS  Google Scholar 

  14. Mishra, G., & Saka, S. (2011). Bioresource Technology, 102, 10946–10950.

    Article  CAS  Google Scholar 

  15. Lee, S. H., Teramoto, Y., & Shiraishi, N. (2002). Journal of Applied Polymer Science, 83, 1473–1481.

    Article  CAS  Google Scholar 

  16. Lee, S. H., Teramoto, Y., & Shiraishi, N. (2002). Journal of Applied Polymer Science, 84, 468–472.

    Article  CAS  Google Scholar 

  17. Jin, Y., Cheng, X., & Zheng, Z. (2010). Bioresource Technology, 101(6), 2046–2048.

    Article  CAS  Google Scholar 

  18. Wang, M., Leitch, M., & Xu, C. (2009). European Polymer Journal, 45(12), 3380–3388.

    Article  CAS  Google Scholar 

  19. Robertson, J. B., & Van Soest, P. J. (1981). In W. P. James & T. Theander (Eds.), Analysis of dietary fibre in food, The detergent system of analysis and its application to human foods (pp. 123–158). New York: Marcel Dekke.

    Google Scholar 

  20. Lee, S. H., Yoshioka, M., & Shiraishi, N. (2000). Journal of Applied Polymer Science, 78, 311–318.

    Article  CAS  Google Scholar 

  21. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  22. Kubicek, C. (1982). Archives of Microbiology, 132, 349–354.

    Article  CAS  Google Scholar 

  23. Sun, F. B., & Chen, H. Z. (2008). Bioresource Technology, 99, 5474–5479.

    Article  CAS  Google Scholar 

  24. Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). Biofuels, 108, 67–93.

    Article  CAS  Google Scholar 

  25. Lee, S. H., & Ohkita, T. (2003). Wood Sci. Technology, 37, 29–38.

    CAS  Google Scholar 

  26. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  27. Zheng, Y., Pan, Z. L., & Zhang, R. H. (2009). International Journal of Agriculture and Biology Engineering, 2, 51–68.

    CAS  Google Scholar 

  28. Pan, H., Shupe, T. F., & Hse, C. Y. (2007). Journal of Applied Polymer Science, 105, 3739–3746.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2011CB707401), the National High Technology Research and Development Program of China (SS2012AA022502), and the National Key Project of Scientific and Technical Supporting Program of China (No. 2011BAD22B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Zhang, Y. & Xie, S. Selective Liquefaction of Wheat Straw in Phenol and Its Fractionation. Appl Biochem Biotechnol 167, 250–258 (2012). https://doi.org/10.1007/s12010-012-9675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9675-y

Keywords

Navigation