Skip to main content
Log in

Operational Stability to Changes in Composition of Herbicide Mixtures Fed to a Laboratory-Scale Biobarrier

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The main objective of this work was to evaluate the operational stability of a laboratory-scale aerobic biobarrier designed for the treatment of water contaminated by mixtures of three herbicides frequently found in agricultural runoffs, atrazine, simazine and 2,4-dichlorophenoxyacetic acid (2,4-D). The microbial consortium used to degrade the herbicides was composed by six cultivable bacterial strains, identified as members of the genera Variovorax, Sphingopyxis, Hydrocarboniphaga, Methylobacterium, Pseudomonas and Acinetobacter. The effect caused by a seventh member of the microbial consortium, a ciliated protozoa of the genus Colpoda, on the herbicides biodegradation kinetics, was also evaluated. The biodegradation of five combinations of the herbicides 2,4-D, atrazine and simazine was studied in the biobarrier, operated in steady state continuous culture at different volumetric loading rates. In all cases, removal efficiencies determined by chemical oxygen demand (COD) and HPLC were nearly 100 %. These results, joined to the null accumulation of aromatic byproducts of atrazine and simazine catabolism, show that after 495 days of operation, in the presence of the protozoa, the adaptability of the microbial consortium to changing environmental conditions allowed the complete removal of the mixture of herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. LeBaron, H. M., & Hill, E. R. (2008). In H. M. LeBaron, J. E. McFarland, & O. C. Burnside (Eds.), The triazine herbicides. 50 years revolutionizing agriculture (pp. 133–152). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  2. Gressel, J., & Segel, L. A. (1990). Weed Technology, 4, 186–198.

    Google Scholar 

  3. Entry, J. A., Donnelly, P. K., & Emmingham, W. H. (1996). Applied Soil Ecology, 3, 85–90.

    Article  Google Scholar 

  4. Zeliger, H. I. (2011). Human toxicology of chemical mixtures. Toxic consequences beyond the impact of one-component product and environmental exposures (2nd ed., p. 177). Amsterdam: Elsevier.

    Google Scholar 

  5. Pimentel, D., & Edwards, C. A. (1982). BioScience, 32, 595–600.

    Article  CAS  Google Scholar 

  6. Graymore, M., Stagnitti, F., & Allinson, G. (2001). Environment International, 26, 483–495.

    Article  CAS  Google Scholar 

  7. Cheng, C., Shaogui, Y., Yaping, G., Cheng, S., Chenggang, G., & Bin, X. (2009). Journal of Hazardous Materials, 172, 675–684.

    Article  Google Scholar 

  8. Cimino-Reale, G., Ferrario, D., Casati, B., Brustio, R., Diodovich, C., Collotta, A., Vahter, M., & Gribaldo, L. (2007). Toxicology Letters, 180, 59–66.

    Article  Google Scholar 

  9. Gunasekara, A. S., Troiano, J., Goh, K. S., & Tjeerdema, R. S. (2007). Reviews of Environmental Contamination and Toxicology, 189, 1–23.

    Article  CAS  Google Scholar 

  10. Arias, E. M., López, P. E., Martínez, C. E., Simal, G. J., Mejuto, J., & García, R. L. (2008). Agriculture, Ecosystems and Environment, 123, 247–260.

    Article  Google Scholar 

  11. Troiano, J., Weaver, D., Marade, J., Spurlock, F., Pepple, M., Nordmark, C., & Bartkowiak, D. (2001). Journal of Environmental Quality, 30, 448–459.

    Article  CAS  Google Scholar 

  12. Flores, C., Morgante, V., González, M., Navia, R., & Seeger, M. (2009). Chemosphere, 74, 1544–1549.

    Article  CAS  Google Scholar 

  13. Birnbaum, L., & Fenton, S. (2003). Environmental Health Perspectives, 111, 389–394.

    Article  CAS  Google Scholar 

  14. Hayes, T., Case, P., Chui, S., Chung, D., Haeffele, C., & Haston, K. (2006). Environmental Health Perspectives, 114, 40–50.

    Article  Google Scholar 

  15. Lindsay, S., Chasse, J., Butler, R. A., Morrill, W., & Van Beneden, R. J. (2010). Aquatic Toxicology, 98, 265–274.

    Article  CAS  Google Scholar 

  16. De Wilde, T., Spanoghe, P., Debaer, C., Ryckeboer, J., Springael, D., & Jaeken, P. (2007). Pest Management Science, 63, 111–128.

    Article  Google Scholar 

  17. Castillo, M. P., & Tortensson, L. (2008). In M. D. Annable, M. Teodorescu, P. Hlavinek, & L. Diels (Eds.), Methods and techniques for cleaning-up contaminated sites (pp. 145–151). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  18. Hunter, W. J., & Shaner, D. L. (2010). Current Microbiology, 60, 42–46.

    Article  CAS  Google Scholar 

  19. Simon, F.-G., & Meggyes, T. (2000). Land Contamination and Reclamation, 8, 103–117.

    Google Scholar 

  20. Verhagen, P., De Gelder, L., Hoefman, S., De Vos, P., & Boon, N. (2011). Applied and Environmental Microbiology, 77, 4728–4735.

    Article  CAS  Google Scholar 

  21. De los Cobos-Vasconcelos, D., Ruiz-Ordaz, N., Galíndez-Mayer, J., Poggi-Varaldo, H., Juárez-Ramírez, C., & López-Muñoz, A. (2012). Engineering in Life Sciences, 12, 39–48.

    Article  Google Scholar 

  22. Relman, D. A. (1993). In H. D. Persing, T. F. Smith, C. F. Tenover, & S. T. White (Eds.), Diagnostic molecular microbiology. Principles and applications (pp. 489–495). Washington DC: American Chemical Society.

    Google Scholar 

  23. Kurtzman, C. P., & Robnett, C. J. (1997). Journal of Clinical Microbiology, 35, 1216–1223.

    CAS  Google Scholar 

  24. Gómez-De Jesús, A., Romano-Baez, F. J., Leyva-Amezcua, L., Juárez-Ramírez, C., Ruiz-Ordaz, N., & Galíndez-Mayer, J. (2009). Journal of Hazardous Materials, 161, 1140–1149.

    Article  Google Scholar 

  25. Kelly, M. O., Hallberg, K. B., & Tuovinen, O. H. (1989). Applied and Environmental Microbiology, 55, 2717–2719.

    CAS  Google Scholar 

  26. Vaz, C. M. P., Silva, P. R. V., Prado, I., Castanho, G. M., II, Simões, F. T., & Machado, S. A. S. (2008). Quimica Nova, 31, 1310–1314. doi:10.1590/S0100-40422008000600007.

    Article  CAS  Google Scholar 

  27. (1999). Hach wastewater and biosolids analysis manual. Colorado, USA: Hach Company.

  28. Smith, D., Alvey, S., & Crowley, D. E. (2005). FEMS Microbiology Ecology, 53, 265–273.

    Article  CAS  Google Scholar 

  29. Sipilä, T. P., Väisänen, P., Paulin, L., & Yrjälä, K. (2010). Biodegradation, 21, 771–784.

    Article  Google Scholar 

  30. Tang, Y.-Q., Ji, P., Lai, G.-L., Chi, C.-Q., Liu, Z.-S., & Wu, X.-L. (2012). International Journal of Coal Geology, 90–91, 21–23.

    Article  Google Scholar 

  31. Vyas, T. K., & Dave, B. P. (2010). Indian Journal of Marine Sciences, 39, 143–150.

    CAS  Google Scholar 

  32. Van Aken, B., Yoon, J. M., & Schnoor, J. L. (2004). Applied and Environmental Microbiology, 70, 508–517.

    Article  Google Scholar 

  33. Mostafa, F. I. Y., & Helling, C. S. (2003). Journal of Environmental Science and Health Part B—Pesticides. Food Contaminants, and Agricultural Wastes, 38, 783–797.

    Google Scholar 

  34. Finlay, B. J., Esteban, G. F., Clarke, K. J., & Olm, J. L. (2001). Protist, 152, 355–366.

    Article  CAS  Google Scholar 

  35. Sogame, Y., Kida, A., & Matsuoka, T. (2011). African Journal of Microbiology Research, 5, 4316–4320.

    CAS  Google Scholar 

  36. Costache, C., Bursaşiu, S., Filipaş, C., & Colosi, I. (2011). Iranian Journal of Parasitology, 6, 99–104.

    CAS  Google Scholar 

  37. Zarda, B., Mattison, G., Hess, A., Hahn, D., Höhener, P., & Zeyer, J. (1998). FEMS Microbiology Ecology, 27, 141–152.

    Article  CAS  Google Scholar 

  38. Rogerson, A., & Berger, J. (1983). Journal of General and Applied Microbiology, 29, 41–50.

    Article  CAS  Google Scholar 

  39. Chen, Q. H., Tam, N. F., Shin, P. K., Cheung, S. G., & Xu, R. L. (2009). Marine Pollution Bulletin, 58, 711–719.

    Article  CAS  Google Scholar 

  40. Xu, Z (1996). PhD thesis, Pennsylvania State University, USA.

  41. Tso, S.-F., & Taghon, G. L. (2006). Microbial Ecology, 51, 460–469.

    Article  CAS  Google Scholar 

  42. Nagpal, V., & Paknikar, K. M. (2006). Indian Journal of Biotechnology, 5, 400–406.

    CAS  Google Scholar 

  43. Huws, S. A., McBain, A. J., & Gilbert, P. (2005). Journal of Applied Microbiology, 98, 238–244.

    Article  CAS  Google Scholar 

  44. Ghisalberti, E. L. (2008). In S. M. Colegate & R. J. Molyneux (Eds.), Bioactive natural products: Detection, isolation, and structural determination (2nd ed., pp. 11–76). Boca Raton FL, USA: CRC Press, Taylor & Francis Group.

    Google Scholar 

  45. Chadwick, N. E., & Morrow, K. M. (2011). In Z. Dubinsky & N. Stambler (Eds.), Coral reefs: An ecosystem in transition (pp. 347–371). Dordrecht: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgments

O. Ramos-Monroy and I. Nava-Arenas were holders of a research grant from Conacyt. Ruiz-Ordaz N, Juárez-Ramírez C, and Galíndez-Mayer J, are holders of grants from COFAA-IPN, SIP-IPN, and SNI-Conacyt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Galíndez-Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos-Monroy, O., Ruiz-Ordaz, N., Galíndez-Mayer, J. et al. Operational Stability to Changes in Composition of Herbicide Mixtures Fed to a Laboratory-Scale Biobarrier. Appl Biochem Biotechnol 169, 1418–1430 (2013). https://doi.org/10.1007/s12010-012-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0082-1

Keywords

Navigation