Skip to main content
Log in

Kinetic and Physiological Evaluation of Ammonium and Nitrite Oxidation Processes in Presence of 2-Chlorophenol

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of 2-chlorophenol (2-CP) on ammonium and nitrite-oxidizing processes was kinetically evaluated in batch cultures with nitrifying sludge at steady state. Assays with ammonium or nitrite as energy source and 2.5, 5.0, or 10.0 mg 2-CP-C/l were conducted. Control assays without 2-CP were also performed. Ammonium-oxidizing activity was completely inhibited at the different 2-CP concentrations, whereas nitrite-oxidizing activity was present as nitrite was completely consumed and converted to nitrate irrespectively of 2-CP concentration. In the presence of 2.5 and 5.0 mg 2-CP-C/l, no significant effect on specific rates of nitrite consumption and nitrate production was observed, but a significant decrease on these parameters was observed at 10.0 mg 2-CP-C/l. The nitrifying sludge previously exposed to 2-CP was unable to completely recover its ammonium and nitrite oxidation capacity. Nevertheless, complete 2-CP consumption was achieved in all assays. The effect of 2-CP on ammonium oxidation was observed at kinetic and metabolic pathway level, whereas the effect on nitrite oxidation was observed only at kinetic level. The results obtained in this work evidenced that in order to achieve a successful nitrification process the presence in wastewater of even 2.5 mg 2-CP-C/l should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agency for toxic substances and disease registry (ATSDR) (2005). www.atsdr.cdc.gov/cercla/05list.html Accessed July, 2012.

  2. Czaplicka, M. (2004). Science of the Total Environment, 322, 21–39.

    Article  CAS  Google Scholar 

  3. Atuanya, E. I., Purohit, H. J., & Chakrabarti, T. (2000). Journal of Microbiology and Biotechnology, 16, 95–98.

    Article  CAS  Google Scholar 

  4. Basu, S. K., & Oleszkiewicz, J. A. (1995). Environmental Technology, 16, 1135–11343.

    Article  CAS  Google Scholar 

  5. Fava, F., & Armenante, P. M. (1995). Kafkewitz. Letters in Applied Microbiology, 21, 307–312.

    Article  CAS  Google Scholar 

  6. Bae, H. S., Yamagishi, T., & Suwa, Y. (2002). Microbiology, 148, 221–227.

    CAS  Google Scholar 

  7. Macarie, H. & Guiot (1995). Ed. Galindo pp 317–322.

  8. Farrell, A., & Quilty, B. (1999). Biodegradation, 10, 353–362.

    Article  CAS  Google Scholar 

  9. Beristain-Montiel, L., Gómez-Hernández, J., Monroy-Hermosillo, O., Cuervo-López, F., & de Ramírez-Vives, F. M. (2010). Water Science and Technology, 62(8), 1791–1798.

    Article  CAS  Google Scholar 

  10. Gomez, J., Lema, J. M., & Mendez, J. R. (1995). Ciencia, 46, 507–523.

    Google Scholar 

  11. McCarty, G. W. (1999). Biology and Fertility of Soils, 29, 1–9.

    Article  CAS  Google Scholar 

  12. Sayavedra-Soto, L. A., Gvakharia, B., Bottomley, P. J., Arp, D. J., & Dolan, E. M. (2010). Applied Microbiology and Biotechnology, 86, 435–444.

    Article  CAS  Google Scholar 

  13. Gomez, J., Mendez, J. R., & Lema, J. M. (2000). Applied Biochemistry and Biotechnology, 88, 1–12.

    Article  Google Scholar 

  14. Zepeda, A., Texier, A. C., & Gomez, J. (2003). Biotecnologia Progress, 19, 789–793.

    Article  CAS  Google Scholar 

  15. Zepeda, A., Texier, A. C., Razo-Flores, E., & Gomez, J. (2006). Water Research, 40, 1643–1649.

    Article  CAS  Google Scholar 

  16. Silva, C. D., Gómez, J., Houbron, E., Cuervo-López, F. M., & Texier, A. C. (2009). Chemosphere, 75, 1387–1391.

    Article  CAS  Google Scholar 

  17. Hyman, M. R., Samsone-Smith, A. W., Shears, J. H., & Wood, P. M. (1985). Archives of Microbiology, 143, 302–306.

    Article  CAS  Google Scholar 

  18. Keener, W., & Arp, D. J. (1994). Applied Microbiology, 60, 1914–1920.

    CAS  Google Scholar 

  19. Texier, A. C., & Gomez, J. (2007). Water Research, 41, 315–322.

    Article  CAS  Google Scholar 

  20. Satoh, H., Sasaki, Y., Nakamura, Y., Okabe, S., & Suzuki, T. (2005). Wiley Interscience, 91, 133–137.

    CAS  Google Scholar 

  21. Inui, T., Tanaka, Y., Okayasu, Y., & Tanaka, H. (2002). Water Science and Technology, 45, 271–278.

    CAS  Google Scholar 

  22. Martínez-Hernández, S., Texier, A. C., Cuervo-López, F. M., & Gómez, J. (2011). Journal of Hazardous Materials, 185, 1592–1595.

    Article  Google Scholar 

  23. Kim, Y. M., Park, D., Lee, D. S., & Park, J. M. (2008). Journal of Hazardous Materials, 152, 915–921.

    Article  CAS  Google Scholar 

  24. Silva, C. D., Gómez, J., & Beristain-Cardoso, R. (2011). Bioresource Technology, 102, 6464–6468.

    Article  CAS  Google Scholar 

  25. Lowry, O. H., Brough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  26. Hintze, J. (2001). Number cruncher statistical system (NCSS).

  27. Amor, L., Eioria, M., Kennes, C., & Veiga, M. C. (2005). Water Research, 39, 2915–2920.

    Article  CAS  Google Scholar 

  28. Klecka, G. M., & Gibson, D. T. (1981). Applied and Environmental Microbiology, 41, 1159–1165.

    CAS  Google Scholar 

  29. Ensings, A., Hyman, M. R., & Arp, D. J. (1993). Journal of Bacteriology, 175(7), 1971–1980.

    Google Scholar 

  30. Aleem, M. I. H., & Alexander, M. (1958). Journal of Bacteriology, 76(5), 510–514.

    Google Scholar 

  31. Kelly, R. T., Henriques, I. D. S., & Love, N. G. (2004). Biotechnology and Bioengineering, 6(85), 683–694.

    Google Scholar 

  32. Stouthamer, A. H. (1976). Advances in Microbiology Physiology, 14, 315–375.

    Article  CAS  Google Scholar 

  33. Keweloh, H., Weyrauch, G., & Rehm, H.-J. (1990). Applied Microbiology and Biotechnology, 33, 66–71.

    Article  CAS  Google Scholar 

  34. de Sikkema, J., Bont, J. A. M., & Poolman, B. (1995). Microbial Reviews, 59(2), 201–222.

    CAS  Google Scholar 

  35. de Bont, J. A. M. (1998). Trends in Biotechnology, 16(12), 493–499.

    Article  Google Scholar 

  36. Heipieper, H.-J., Weber, F. J., Sikkema, J., Keweloh, H., & de Bont, J. A. M. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 12, 409–415.

    Article  CAS  Google Scholar 

  37. Rasche, M. E., Hyman, M. R., & Arp, D. J. (1991). Applied and Environmental Microbiology, 10, 2986–2994.

    Google Scholar 

  38. Moiseeva, V. O., Solyanikova, P. I., Kaschabek, R. S., Grönig, J., Thiel, M., Golovleva, A. L., & Schlömann, M. (2002). Journal of Bacteriology, 184, 5282–5292.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Council of Science and Technology of Mexico (grant no. CONACYT-CB-2011-01-165174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Cuervo-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Alfaro, J.E., Buitrón, G., Gomez, J. et al. Kinetic and Physiological Evaluation of Ammonium and Nitrite Oxidation Processes in Presence of 2-Chlorophenol. Appl Biochem Biotechnol 169, 990–1000 (2013). https://doi.org/10.1007/s12010-012-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0065-2

Keywords

Navigation