Skip to main content
Log in

Modelling Growth and Bacteriocin Production by Pediococcus acidilactici PA003 as a Function of Temperature and pH Value

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the effect of pH and temperature on the cell growth and bacteriocin production of Pediococcus acidilactici PA003, a lactic acid bacterium isolated from traditionally fermented cabbage, the kinetic behaviour of P. acidilactici PA003 was simulated in vitro during laboratory fermentations by making use of MRS broth. Firstly, primary models were developed for cell growth, glucose consumption, lactic acid and bacteriocin production for a given set of environmental conditions. Based on primary models, further study was undertaken to fit secondary models to describe the influence of temperature and pH on microbial behaviour. The models were validated successfully for all components. The results from the cell yield coefficient for lactic acid production reflected the homofermentative nature of P. acidilactici PA003. Both cell growth and bacteriocin production were very much influenced by changes in temperature and pH. The optimal condition for specific growth rate and biomass concentration was almost the same at pH 6.5 and 35 °C. At 35 °C and pH 6.1, the maximal bacteriocin activity was also achieved. The kinetic models provide useful tools for elucidating the mechanisms of temperature and pH on the kinetic behaviour of P. acidilactici PA003. The information obtained in this paper may be very useful for the selection of suitable starter cultures for a particular fermentation process and is a first step in the optimization of food fermentation processes and technology as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aktypis, A., Tychowski, M., Kalantzopoulos, G., & Aggelis, G. (2007). Antonie Van Leeuwenhoek, 92, 207–220.

    Article  CAS  Google Scholar 

  2. Atala, D. I. P., Costa, A. C., Maciel, R., & Maugeri, F. (2001). Applied Biochemistry and Biotechnology, 91–93, 353–366.

    Article  Google Scholar 

  3. Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., Hwang, J. K., & Pyun, Y. R. (2002). Journal of Biotechnology, 95, 225–235.

    Article  CAS  Google Scholar 

  4. Daba, H., Pandian, S., Gosselin, J. F., Simard, R. E., Huang, J., & Lacroix, C. (1991). Applied and Environmental Microbiology, 57, 3450–3455.

    CAS  Google Scholar 

  5. Daeschel, M. A., McKeney, M. C., & McDonald, L. C. (1990). Food Microbiology, 7, 91–98.

    Article  CAS  Google Scholar 

  6. De Vuyst, L., & Vandamme, E. J. (1994). Lactic acid bacteria and bacteriocins: Their practical importance. In L. De Vuyst & E. J. Vandamme (Eds.), Bacteriocins of lactic acid bacteria, microbiology, genetics and applications (pp. 1–11). London: Blackie Academic and Professional.

    Google Scholar 

  7. De Vuyst, L., Callewaert, R., & Pot, B. (1996). Systematic and Applied Microbiology, 19, 9–20.

    Article  Google Scholar 

  8. De Vuyst, L., Callewaert, R., & Crabbé, K. (1996). Microbiology, 142, 817–827.

    Article  Google Scholar 

  9. Dengremont, E., & Membré, J. M. (1995). Applied and Environmental Microbiology, 61, 4389–4395.

    CAS  Google Scholar 

  10. Drosinos, E. H., Mataragas, M., Nasis, P., Galiotou, M., & Metaxopoulos, J. (2005). Journal of Applied Microbiology, 99, 1314–1323.

    Article  CAS  Google Scholar 

  11. Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). International Journal of Food Microbiology, 120, 51–70.

    Article  Google Scholar 

  12. Holzapfel, W. H. (2002). International Journal of Food Microbiology, 75, 197–212.

    Article  CAS  Google Scholar 

  13. Lejeune, R., Callewaert, R., Crabbe, K., & De Vuyst, L. (1998). Journal of Applied Microbiology, 84, 159–168.

    Article  CAS  Google Scholar 

  14. Leroy, F., & De Vuyst, L. (1999). Applied and Environmental Microbiology, 65, 974–981.

    CAS  Google Scholar 

  15. Leroy, F., & De Vuyst, L. (1999). Applied and Environmental Microbiology, 65, 5350–5356.

    CAS  Google Scholar 

  16. Mataragas, M., Metaxopoulos, J., Galiotou, M., & Drosinos, E. H. (2003). Meat Science, 64, 265–271.

    Article  CAS  Google Scholar 

  17. Matsusaki, H., Endo, N., Sonomoto, K., & Ishizaki, A. (1996). Applied Microbiology and Biotechnology, 45, 36–40.

    Article  CAS  Google Scholar 

  18. Moretro, T., Aasen, I. M., Storro, I., & Axelsson, L. (2000). Journal of Applied Microbiology, 88, 536–545.

    Article  CAS  Google Scholar 

  19. Neysens, P., & De Vuyst, L. (2005). Trends in Food Science and Technology, 16, 95–103.

    Article  CAS  Google Scholar 

  20. Parente, E., & Ricciardi, A. (1994). Letters in Applied Microbiology, 19, 12–15.

    Article  CAS  Google Scholar 

  21. Parente, E., Ricciardi, A., & Addario, G. (1994). Applied Microbiology and Biotechnology, 41, 388–394.

    CAS  Google Scholar 

  22. Rajaram, G., Manivasagan, P., Thilagavathi, B., & Saravanakumar, A. (2010). Advanced Journal of Food Science and Technology, 2, 138–144.

    CAS  Google Scholar 

  23. Rosso, L., Lobry, J. R., Bajard, S., & Flandrois, J. P. (1995). Applied and Environmental Microbiology, 61, 610–616.

    CAS  Google Scholar 

  24. Schillinger, U., Geisen, R., & Holzapfel, W. H. (1996). Trends in Food Science and Technology, 71, 58–64.

    Google Scholar 

  25. Smith, J. L., & Palumbo, S. A. (1983). Journal of Food Protection, 46, 997–1006.

    Google Scholar 

  26. Stiles, M. E. (1996). Antonie Van Leeuwenhoek, 70, 331–345.

    Article  CAS  Google Scholar 

  27. Todorov, S., Gotcheva, B., Dousset, X., Onno, B., & Ivanova, I. (2000). Biotechnology and Biotechnological Equipment, 14, 50–55.

    CAS  Google Scholar 

  28. Van den Berghe, E., Skourtas, G., Tsakalidou, E., & De Vuyst, L. (2006). International Journal of Food Microbiology, 107, 138–147.

    Article  Google Scholar 

  29. Wijtzes, T., De-Wit, J. C., Huis ińt Veld, J. H. J., Vańt Riet, K., & Zwietering, M. H. (1995). Applied and Environmental Microbiology, 61, 2533–2539.

    CAS  Google Scholar 

  30. Ye, H., Zhi Jiang, Z., Ping Ping, W., & Li Xia, Z. (2008). Journal of Jilin Agricultural University, 30, 360–363.

    Google Scholar 

  31. Zwietering, M. H., De-Wit, J. C., & Notermans, S. (1996). International Journal of Food Microbiology, 30, 55–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 31101275), the Tianjin Natural Science Foundation (no. 08JCZDJC22500) and a research grant (no. 20100207) from Tianjin University of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-jiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, Y., Liu, Sn. et al. Modelling Growth and Bacteriocin Production by Pediococcus acidilactici PA003 as a Function of Temperature and pH Value. Appl Biochem Biotechnol 166, 1388–1400 (2012). https://doi.org/10.1007/s12010-011-9532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9532-4

Keywords

Navigation