Skip to main content
Log in

Purification and Biochemical Characterization of a Highly Thermostable Xylanase from Actinomadura sp. Strain Cpt20 Isolated from Poultry Compost

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An extracellular thermostable xylanase from a newly isolated thermophilic Actinomadura sp. strain Cpt20 was purified and characterized. Based on matrix-assisted laser desorption–ionization time-of-flight mass spectrometry analysis, the purified enzyme is a monomer with a molecular mass of 20,110.13 Da. The 19 residue N-terminal sequence of the enzyme showed 84% homology with those of actinomycete endoxylanases. The optimum pH and temperature values for xylanase activity were pH 10 and 80 °C, respectively. This xylanase was stable within a pH range of 5–10 and up to a temperature of 90 °C. It showed high thermostability at 60 °C for 5 days and half-life times at 90 °C and 100 °C were 2 and 1 h, respectively. The xylanase was specific for xylans, showing higher specific activity on soluble oat-spelt xylan followed by beechwood xylan. This enzyme obeyed the Michaelis–Menten kinetics, with the K m and k cat values being 1.55 mg soluble oat-spelt xylan/ml and 388 min−1, respectively. While the xylanase from Actinomadura sp. Cpt20 was activated by Mn2+, Ca2+, and Cu2+, it was, strongly inhibited by Hg2+, Zn2+, and Ba2+. These properties make this enzyme a potential candidate for future use in biotechnological applications particularly in the pulp and paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Polizeli, M. L., Rizzatti, A. C., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  2. Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiology Reviews, 52, 305–317.

    CAS  Google Scholar 

  3. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  4. Terrasan, C. R., Temer, B., Duarte, M. C., & Carmona, E. C. (2010). Bioresource Technology, 101, 4139–4143.

    Article  CAS  Google Scholar 

  5. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  6. Sunna, A., & Antranikian, G. (1997). Critical Review in Biotechnology, 17, 39–67.

    Article  CAS  Google Scholar 

  7. Ben Romdhane, I. B., Achouri, I. M., & Belghith, H. (2010). Applied Biochemistry and Biotechnology, 162, 1635–1646.

    Article  CAS  Google Scholar 

  8. Maalej, I., Belhaj, I., Masmoudi, N. F., & Belghith, H. (2009). Applied Biochemistry and Biotechnology, 158, 200–212.

    Article  CAS  Google Scholar 

  9. Chen, X., Xu, S., Zhu, M., Cui, L., Zhu, H., Liang, Y., et al. (2010). Process Biochemistry, 45, 75–80.

    Article  CAS  Google Scholar 

  10. Liu, L., Cheng, J., Chen, H., Li, X., Wang, S., Song, A., et al. (2010). Process Biochemistry, 46, 395–398.

    Article  Google Scholar 

  11. Zhou, P., Zhu, H., Yan, Q., Katrolia, P., & Jiang, Z. (2011). Applied Biochemistry and Biotechnology, 164, 944–956.

    Article  CAS  Google Scholar 

  12. Shi, Q. Q., Sun, J., Yu, H. L., Li, C. X., Bao, J., & Xu, J. H. (2011). Applied Biochemistry and Biotechnology, 164, 816–830.

    Article  Google Scholar 

  13. Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., & Chansiri, K. (2011). Journal of Bioscience and Bioengineering, 111, 528–536.

    Article  CAS  Google Scholar 

  14. Holtz, C., Kaspari, H., & Klemme, J. H. (1991). Antonie Van Leeuwenhoek, 59, 1–7.

    Article  CAS  Google Scholar 

  15. Ethier, J. F., Harpin, S., Girard, C., Beaulieu, C., Déry, C. V., & Brzezinski, R. (1994). Canadian Journal of Microbiology, 40, 362–368.

    Article  CAS  Google Scholar 

  16. Leskinen, S., Mantyla, A., Fagerstrom, R., Vehmaanpera, J., Lantto, R., Paloheimo, M., et al. (2005). Applied Microbiology and Biotechnology, 67, 495–505.

    Article  CAS  Google Scholar 

  17. Berens, S., Kaspari, H., & Klemme, J. H. (1996). Antonie Van Leeuwenhoek, 69, 235–241.

    Article  CAS  Google Scholar 

  18. Zhou, J., Shi, P., Zhang, R., Huang, H., Meng, K., Yang, P., et al. (2010). Journal of Industrial Microbiology and Biotechnology, 38, 523–530.

    Article  Google Scholar 

  19. Ninawe, S., Kapoor, M., & Kuhad, R. C. (2008). Bioresource Technology, 99, 1252–1258.

    Article  CAS  Google Scholar 

  20. George, S. P., Ahmad, A., & Rao, M. B. (2001). Bioresource Technology, 78, 221–224.

    Article  CAS  Google Scholar 

  21. Blanco, J., Coque, J. J., Velasco, J., & Martin, J. F. (1997). Applied Microbiology and Biotechnology, 48, 208–217.

    Article  CAS  Google Scholar 

  22. Beg, Q. K., Bhushan, B., Kapoor, M., & Hoondal, G. S. (2000). Enzyme and Microbial Technology, 27, 459–466.

    Article  CAS  Google Scholar 

  23. Nanmori, T., Watanabe, T., Shinke, R., Kohno, A., & Kawamura, Y. (1990). Journal of Bacteriology, 172, 6669–6672.

    CAS  Google Scholar 

  24. Gurtler, V., & Stanisich, V. A. (1996). Microbiology, 142, 3–16.

    Article  Google Scholar 

  25. Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed., pp. 23–38). Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  26. Felsenstein, J. (1985). Evolution, 39, 783–791.

    Article  Google Scholar 

  27. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  28. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  29. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  30. Kubata, B. K., Suzuki, T., Horitsu, H., Kawai, K., & Takamizawa, K. (1994). Applied and Environmental Microbiology, 60, 531–535.

    CAS  Google Scholar 

  31. Hewick, R. M., Hunkapiller, M. W., Hood, L. E., & Dreyer, W. J. (1981). The Journal of Biological Chemistry, 256, 7990–7997.

    CAS  Google Scholar 

  32. Nawel, B., Said, B., Estelle, C., Hakim, H., & Duchiron, F. (2011). Process Biochemistry, 46, 519–525.

    Article  CAS  Google Scholar 

  33. Nascimento, R. P., Coelho, R. R. R., Marques, S., Alves, L., Gírio, F. M., Bon, E. P. S., et al. (2002). Enzyme and Microbial Technology, 31, 549–555.

    Article  CAS  Google Scholar 

  34. do Nascimento, R. P., Marques, S., Alves, L., Gírio, F., Amaral-Collaço, M. T., et al. (2003). World Journal of Microbiology and Biotechnology, 19, 879–881.

    Article  Google Scholar 

  35. Techapun, C., Charoenrat, T., Poosaran, N., Watanabe, M., & Sasak, K. (2002). Journal of Bioscience and Bioengineering, 93, 431–433.

    CAS  Google Scholar 

  36. Camacho, N. A., & Aguilar, O. G. (2003). Applied Biochemistry and Biotechnology, 104, 159–172.

    Article  CAS  Google Scholar 

  37. Fang, H. Y., Chang, S. M., Lan, C. H., & Fang, T. J. (2008). Process Biochemistry, 43, 49–55.

    Article  CAS  Google Scholar 

  38. Georis, J., Giannotta, F., Lamotte-Brasseur, J., Devreese, B., Van Beeumen, J., Granier, B., et al. (1999). Gene, 237, 123–133.

    Article  CAS  Google Scholar 

  39. Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lv, Y., et al. (2010). Biochemical Engineering Journal, 52, 71–78.

    Article  CAS  Google Scholar 

  40. Lv, Z., Yang, J., & Yuan, H. (2008). Enzyme and Microbial Technology, 43, 343–348.

    Article  CAS  Google Scholar 

  41. Kui, H., Luo, H., Shi, P., Bai, Y., Yuan, T., Wang, Y., et al. (2010). Applied Biochemistry and Biotechnology, 162, 953–965.

    Article  Google Scholar 

  42. Vafiadi, C., Christakopoulos, P., & Topakas, E. (2010). Process Biochemistry, 45, 419–424.

    Article  CAS  Google Scholar 

  43. Jaouadi, B., Abdelmalek, B., Fodil, D., Ferradji, F. Z., Rekik, H., Zarai, N., et al. (2010). Bioresource Technology, 101, 8361–8369.

    Article  CAS  Google Scholar 

  44. Kulkarni, N., Lakshmikumaran, M., & Rao, M. (1999). Biochemical and Biophysical Research Communications, 263, 640–645.

    Article  CAS  Google Scholar 

  45. Henrissat, B. (1991). Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Algerian Ministry of Higher Education and Scientific Research. The authors wish to express their gratitude to Miss Amina Habbeche and Miss Soumaya Haberra for their constructive discussions and valuable help during the preparation of this work. Special thanks are also due to Pr. Anouar Smaoui, from the English department at the Sfax Faculty of Science for carefully proofreading and polishing the language of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ladjama.

Additional information

This work is dedicated to the memory of our colleague Mrs. Zina Taibi, who passed away on July 20th, 2011. May God forgive her and have mercy on her soul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taibi, Z., Saoudi, B., Boudelaa, M. et al. Purification and Biochemical Characterization of a Highly Thermostable Xylanase from Actinomadura sp. Strain Cpt20 Isolated from Poultry Compost. Appl Biochem Biotechnol 166, 663–679 (2012). https://doi.org/10.1007/s12010-011-9457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9457-y

Keywords

Navigation