Skip to main content
Log in

From Inulin to Fructose Syrups Using Sol–Gel Immobilized Inulinase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work aims to provide the basic characterization of sol–gel immobilized inulinase, a biocatalyst configuration yet unexploited, using as model system the hydrolysis of inulin to fructose. Porous xerogel particles with dimensions in slight excess of 10 μm were obtained, yielding an immobilization efficiency of roughly 80%. The temperature– and pH–activity profiles displayed a broader bell-shaped pattern as a result of immobilization. In the latter case, a shift of the optimal pH of 0.5 pH units was observed towards a less acidic environment. The kinetic parameters estimated from the typical Michaelis–Menten kinetics suggest that immobilization in sol–gel did not tamper with the native enzyme conformation, but on the other hand, entrapment brought along mass transfer limitations. The sol–gel biocatalyst displayed a promising operational stability, since it was used in more than 20 consecutive 24-hour batch runs without noticeable decay in product yield. The performance of sol–gel biocatalyst particles doped with magnetite roughly matched the performance of simple sol–gel particles in a single batch run. However, the operational stability of the former proved poorer, since activity decay was evident after four consecutive 24-hour batch runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bajpai, P., & Margaritis, A. (1985). Enzyme and Microbial Technology, 7, 373–376.

    Article  CAS  Google Scholar 

  2. Barranco-Florido, E., García-Garibay, M., Gómez-Ruiz, L., & Azaola, A. (2001). Process Biochemistry, 37, 513–519.

    Article  Google Scholar 

  3. Bernardino, S. M. S. A., Fernandes, P., & Fonseca, L. P. (2009). Biotechnology Journal, 4, 695–702.

    Article  CAS  Google Scholar 

  4. Bernardino, S. M. S. A., Fernandes, P., & Fonseca, L. P. (2010). Biotechnology and Bioengineering, 107, 753–762.

    Article  CAS  Google Scholar 

  5. Betancor, L., & Luckarift, H. R. (2008). Trends in Biotechnology, 26, 566–572.

    Article  CAS  Google Scholar 

  6. Brady, D., & Jordaan, J. (2009). Biotechnological Letters, 31, 1639–1650.

    Article  CAS  Google Scholar 

  7. Buchholz, K., & Seibel, J. (2008). Carbohydrate Research, 343, 1966–1979.

    Article  CAS  Google Scholar 

  8. Catana, R., Eloy, M., Rocha, J. R., Ferreira, B. S., Cabral, J. M. S., & Fernandes, P. (2007). Food Chemistry, 101, 260–266.

    Article  CAS  Google Scholar 

  9. Catana, R., Ferreira, B. S., Cabral, J. M. S., & Fernandes, P. (2005). Food Chemistry, 91, 517–520.

    Article  CAS  Google Scholar 

  10. Cattorini, S., Marques, M. P. C., Carvalho, F., Chheub, V., Cabral, J. M. S., & Fernandes, P. (2009). Chemical and Biochemical Engineering Quarterly, 23, 429–434.

    CAS  Google Scholar 

  11. Danial, E. N., Elnashar, M. M. M., & Awad, G. E. A. (2010). Industrial and Engineering Chemistry Research, 49, 3120–3125.

    Article  CAS  Google Scholar 

  12. David, A. E., Yang, A. J., & Wang, N. S. (2001). In S. D. D. Minteer (Ed.), Enzyme stabilization and immobilization: Methods and protocols, methods in molecular biology, vol. 679 (pp. 49–66). Springer: Humana.

    Google Scholar 

  13. de Paula, F. C., Cazetta, M. L., Monti, R., & Contiero, J. (2008). Food Chemistry, 111, 691–695.

    Article  Google Scholar 

  14. Díaz, E. G., Catana, R., Ferreira, B. S., Luque, S., Fernandes, P., & Cabral, J. M. S. (2006). Journal of Membrane Science, 273, 152–158.

    Article  Google Scholar 

  15. Doig, S. D., Pickering, S. C. R., Lye, G. J., & Woodley, J. M. (2002). Biotechnology and Bioengineering, 80, 42–49.

    Article  CAS  Google Scholar 

  16. Dragomirescu, M., Vintila, T., Preda, G., Luca, A.-M., & Croitoru, V. (2010). Animal Science Biotechnology, 43, 271–274.

    Google Scholar 

  17. Eggleston, G. (2007). In: G. Eggleston, & J. R. Vercellotti (Eds.) Industrial application of enzymes on carbohydrate-based material, ACS Symposium Series (pp. 1–16). USA: Oxford University Press.

  18. Elnashar, M. M. M., & Yassin, M. A. (2009). Applied Biochemistry and Biotechnology, 159, 426–437.

    Article  CAS  Google Scholar 

  19. Ettalibi, M., & Baratti, J. C. (1992). Biocatalysis, 5, 175–182.

    Article  CAS  Google Scholar 

  20. Ettalibi, M., & Baratti, J. C. (2001). Enzyme and Microbial Technology, 28, 596–601.

    Article  CAS  Google Scholar 

  21. Fernandes, P., Marques, M. P. C., Carvalho, F., & Cabral, J. M. S. (2009). Journal of Chemical Technology and Biotechnology, 84, 561–564.

    Article  CAS  Google Scholar 

  22. Garg, N., & Kumar, A. (2008). Brazilian Journal of Chemical Engineering, 25, 229–235.

    Article  CAS  Google Scholar 

  23. Gill, I., & Ballesteros, A. (2000). Trends in Biotechnology, 18, 282–296.

    Article  CAS  Google Scholar 

  24. Gill, P. K., Manhas, R. K., & Singh, P. (2006). Journal of Food Engineering, 76, 369–375.

    Article  CAS  Google Scholar 

  25. Gupta, A. K., Singh, D. P., Kaur, N., & Singh, R. (1994). Journal of Chemical Technology and Biotechnology, 59, 377–385.

    Article  CAS  Google Scholar 

  26. Illanes, A., Fernández-Lafuente, R., Guisán, J. M., & Wilson, L. (2008). In A. Illanes (Ed.), Enzyme biocatalysis—Principles and applications (pp. 155–203). New York: Springer.

    Google Scholar 

  27. Kandimalla, V. B., Tripathi, V. S., & Ju, H. (2006). Critical Reviews in Analytical Chemistry, 36, 73–106.

    Article  CAS  Google Scholar 

  28. Kim, W. Y., Byun, S. M., & Uhm, T. B. (1982). Enzyme and Microbial Technology, 4, 239–244.

    Article  CAS  Google Scholar 

  29. Kochhar, A., Gupta, A. K., & Kaur, N. (1999). Journal of the Science of Food and Agriculture, 79, 549–554.

    Article  CAS  Google Scholar 

  30. Kovaleva, T. A., Holyavka, M. G., & Bogdanova, S. S. (2009). Bulletin of Experimental Biology and Medicine, 148, 39–41.

    Article  CAS  Google Scholar 

  31. Liu, J., Bai, S., Zhong, H., Li, C., & Yang, Q. (2010). Journal of Physical Chemistry C, 114, 953–961.

    Article  CAS  Google Scholar 

  32. Matosevic, S., Micheletti, M., Woodley, J. M., Lye, G. J., & Baganz, F. (2008). Biotechnological Letters, 30, 995–1000.

    Article  CAS  Google Scholar 

  33. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  34. Munjal, N., & Sawhney, S. K. (2002). Enzyme and Microbial Technology, 30, 613–619.

    Article  CAS  Google Scholar 

  35. Nakane, K., Ogihara, T., Ogata, N., & Kurokawa, Y. (2001). Journal of Applied Polymer Science, 81, 2084–2088.

    Article  CAS  Google Scholar 

  36. Nguyen, Q. D., Rezessy-Szabó, J. M., Czukor, B., & Hoschke, A. (2011). Process Biochemistry, 46, 298–303.

    Article  CAS  Google Scholar 

  37. O’Neill, H., Angley, C. V., Hemery, I., Evans, B. R., Dai, S., & Woodward, J. (2002). Biotechnological Letters, 24, 783–790.

    Article  Google Scholar 

  38. Paula, F. C., Cazetta, M. L., Monti, R., & Contiero, J. (2007). Current Trends in Biotechnology and Pharmacy, 1, 34–40.

    CAS  Google Scholar 

  39. Pierre, A. C. (2004). Biocatalysis and Biotransformation, 22, 145–170.

    Article  CAS  Google Scholar 

  40. Poulsen, P. B., & Buchholz, K. (2003). In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology (pp. 11–20). USA: Marcel Dekker.

    Google Scholar 

  41. Praznik, W., Cieslik, E., & Huber, A. (2004). In P. Tomasik (Ed.), Chemical and functional properties of food saccharides (pp. 197–216). Boca Raton: CRC.

    Google Scholar 

  42. Regan, M. R., & Banerjee, I. A. (2007). Journal of Sol–Gel Science and Technology, 43, 27–33.

    Article  CAS  Google Scholar 

  43. Ricca, E., Calabro, V., Curcio, S., Attianese, P., & D’Amore, M. (2009). In: Y. Chen, D. Zhang, H. Deng, & Y. Xiao (Eds.) Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery—Vol. 7, IEEE Press Piscataway, NJ, USA, pp. 150–154. Retrieved January 24, 2011, from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05359971.

  44. Ricca, E., Calabrò, V., Curcio, S., Basso, A., Gardossi, L., & Iorio, G. (2010). International Journal of Molecular Sciences, 11, 1180–1189.

    Article  CAS  Google Scholar 

  45. Ricca, E., Calabrò, V., Curcio, S., & Iorio, G. (2007). Critical Reviews in Biotechnology, 27, 129–145.

    Article  CAS  Google Scholar 

  46. Ricca, E., Calabrò, V., Curcio, S., & Iorio, G. (2009). Biochemical Engineering Journal, 48, 81–86.

    Article  CAS  Google Scholar 

  47. Rocha, J. R., Catana, R., Ferreira, B. S., Cabral, J. M. S., & Fernandes, P. (2006). Food Chemistry, 95, 77–82.

    Article  CAS  Google Scholar 

  48. Schägger, H. (2006). Nature Protocols, 1, 16–22.

    Article  Google Scholar 

  49. Sheldon, R. A. (2007). Advanced Synthesis and Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  50. Singh, R. S., Dhaliwal, R., & Puri, M. (2007). Journal of Industrial Microbiology & Biotechnology, 34, 649–655.

    Article  CAS  Google Scholar 

  51. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M.-D., et al. (1985). Analytical Biochemistry, 150, 76–85.

    Article  CAS  Google Scholar 

  52. Spahn, C., & Minteer, S. D. (2008). Recent Patents on Engineering, 2, 195–200.

    Article  CAS  Google Scholar 

  53. Trevan, M. D. (1980). Immobilized enzymes: An introduction and applications in biotechnology. Chichester: Wiley.

    Google Scholar 

  54. Tufvesson, P., Fu, W., Jensen, J. S., & Woodley, J. M. (2010). Food and Bioproducts Processing, 88, 3–11.

    Article  CAS  Google Scholar 

  55. Vlad-Oros, B., Oniga, O., Dudas, Z., Dragomirescu, M., Preda, G., & Chiriac, A. (2007). Annals of West University of Timisoara, 16, 261–266.

    CAS  Google Scholar 

Download references

Acknowledgements

P. Fernandes acknowledges Fundação para a Ciência e a Tecnologia (FCT) for contract under Programme Ciência 2007. This work was partly supported by grant PTDC/QUI/64744/2006 (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santa, G.L.M., Bernardino, S.M.S.A., Magalhães, S. et al. From Inulin to Fructose Syrups Using Sol–Gel Immobilized Inulinase. Appl Biochem Biotechnol 165, 1–12 (2011). https://doi.org/10.1007/s12010-011-9228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9228-9

Keywords

Navigation