Skip to main content
Log in

Design and Properties of an Immobilization Enzyme System for Inulin Conversion

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A commercial inulinase could convert inulin into fructose, which was optimized to be entrapped in the calcium alginate-gelatin beads with the immobilization yield of 86% for free inulinase activities. The optimum pH values and temperatures were 4.5 and 40 °C for the free enzyme and 5.0–5.5 and 45–50 °C for the immobilized enzyme. The kinetic parameters of V max and K m were 5.24 μmol/min and 57.6 mg/mL for the free inulinase and 4.32 μmol/min and 65.8 mg/mL for the immobilized inulinase, respectively. The immobilized enzyme retained 80% of its initial activities at 45 °C for 4 days, which could exhibit better thermal stability. The reuse of immobilized inulinase throughout the continuous batch operations was explored, which had better reusability of the immobilized biocatalyst. At the same time, the stability of immobilized enzyme in the continuous packed-bed bioreactor was estimated, which showed the better results and had its potential scale-up fructose production for inulin conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chi, Z. M., Zhang, T., Cao, T. S., Liu, X. Y., Cui, W., & Zhao, C. H. (2011). Biotechnological potential of inulin for bioprocesses. Bioresource. Technology, 6(102), 4295–4303.

    Article  Google Scholar 

  2. Catana, R., Eloy, M., Rocha, J. R., Ferreira, B. S., Cabral, J. M. S., & Fernandes, P. (2007). Stability evaluation of an immobilized enzyme system for inulin hydrolysis. Food Chemistry, 101, 260–266.

    Article  CAS  Google Scholar 

  3. Singh, R. S., Dhaliwal, R., & Puri, M. (2008). Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin. Journal of Industrial Microbiology and Biotechnology, 35, 777–782.

    Article  CAS  Google Scholar 

  4. Silva, M. F., Rigo, D., Mossi, V., Dallago, R. M., Henrick, P., Kuhn, G. O., Rosa, C. D., Oliveira, D., Oliveira, J. V., & Treichel, H. (2013). Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food Bioproducts Processing, 91, 54–59.

    Article  CAS  Google Scholar 

  5. Haraguchi, K., & Ohtsubo, K. (2004). Production and immobilization of thermostable oligosaccharide DFA III producing enzyme from Arthrobacter sp. L68-1. Natural Food Research Institute, 68, 19–24.

    Google Scholar 

  6. Jahnz, U., Schubert, M., Baars-Hibbe, H., & Vorlop, K. (2003). Process for producing the potential food ingredient DFA III from inulin: screening, genetic engineering, fermentation and immobilization of inulase II. International Journal of Pharmaceutics, 256, 199–206.

    Article  CAS  Google Scholar 

  7. Wei, W., Wan, W., Le, H., & Wang, S. (1999). Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85. Process Biochemistry, 34, 643–646.

    Article  CAS  Google Scholar 

  8. Gill, P. K., Manhas, R. K., & Singh, P. (2006). Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigatus. Journal of Food Engineering, 76, 369–375.

    Article  CAS  Google Scholar 

  9. Quang, D., Judit, M., Bálint, C., & Ágoston, H. (2011). Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase. Process Biochemistry, 46, 298–303.

    Article  Google Scholar 

  10. Catana, R., Ferreira, B., Cabral, J., & Fernandes, P. (2005). Immobilization of inulinase for sucrose hydrolysis. Food Chemistry, 91, 517–520.

    Article  CAS  Google Scholar 

  11. Aleksandra, M., Nataša, B., & Zoran, V. (2007). Cell wall invertase immobilization within calcium alginate beads. Food Chemisty, 104, 81–86.

    Article  Google Scholar 

  12. Won, K., Kim, S., Kim, K., Park, H., & Moon, S. (2005). Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochemistry, 40, 2149–2154.

    Article  CAS  Google Scholar 

  13. Lowry, O., Rosebrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 31, 426–428.

    Google Scholar 

  14. Tanaka, H., Matsumura, M., & Veliky, I. (1984). Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnology and Bioengineering, 26, 53–58.

    Article  CAS  Google Scholar 

  15. Knezevic, Z., Bobic, S., Milutinovic, A., Obradovic, B., Mojovic, L., & Bugarski, B. (2002). Alginate-immobilized lipase by electrostatic extrusion for the purpose of palm oil hydrolysis in lecithin/isooctane system. Process Biochemistry, 38, 313–318.

    Article  CAS  Google Scholar 

  16. Li, T., Wang, N., Li, S., & Zhao, Q. (2007). Optimization of covalent immobilization of pectinase on sodium alginate support. Biotechnology Letters, 29, 1413–1416.

    Article  CAS  Google Scholar 

  17. Kochhar, A., Gupta, A. K., & Kaur, N. (1999). Purification and immobilisation of inulinase from Aspergillus candidus for producing fructose. Journal of the Science of Food and Agriculture, 79(4), 549–554.

    Article  CAS  Google Scholar 

  18. Paula, F., Cazetta, M., Monti, R., & Contiero, J. (2008). Sucrose hydrolysis by gelatin-immobilized inulinase from Kluyveromyces marxianus var. bulgaricus. Food Chemistry, 111, 691–695.

    Article  Google Scholar 

  19. Santa, G. L. M., Bernardino, S. M. S. A., Magalhaes, S., Mendes, V., Marques, M. P. C., Fonseca, L. P., & Fernandes, P. (2011). From inulin to fructose syrups using sol-gel immobilized inulinase. Applied Biochemistry and Biotechnology, 165, 1–12.

    Article  CAS  Google Scholar 

  20. Singh, R. S., Singh, R. P., & Kennedy, J. F. (2017). Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system. International Journal of Biological Macromolecules, 95, 87–93.

    Article  CAS  Google Scholar 

  21. Nakamura, T., Ogata, Y., Shitara, A., & Nakamura, A. (1995). Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger Mutant 817. Journal of Fermentation and Bioengineering, 80(2), 164–169.

    Article  CAS  Google Scholar 

  22. Kochhar, A., Kaur, N., & Gupta, A. K. (1998). Immobilization of inulinase from Aspergillus versicolor for preparing fructose from inulin. Journal of Science & Industrial Reseach, 57(4), 184–187.

    CAS  Google Scholar 

  23. Paripoorani, K. S., Ashwin, G., Vengatapriya, P., Ranjitha, V., Rupasree, S., Kumar, V. V., & Kumar, V. V. (2015). Insolubilization of inulinase on magnetite chitosan microparticles, an easily recoverable and reusable support. Journal of Molecular Catalysis B: Enzymatic, 113, 47–55.

    Article  CAS  Google Scholar 

  24. Altunbas, C., Uygun, M., Uygun, D. A., Akgol, S., & Denizli, A. (2013). Immobilization of inulinase on concanavalin A-attached super macroporous cryogel for production of high-fructose syrup. Applied Biochemistry and Biotechnology, 170, 1909–1921.

    Article  CAS  Google Scholar 

  25. Lim, S., Lee, K., Lee, Y., & Song, K. (2001). Immobilization of levan fructotransferase for the production of di-fructose anhydride from levan. Biotechnology Letters, 23, 1335–1339.

    Article  CAS  Google Scholar 

  26. Singh, R., Saini, G., & Kennedy, J. (2010). Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system. Carbohydrate Polymers, 81, 252–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the 2016 Key Projects of Anhui Educational Department (No.611607) and 2012-year Dr. Activation Fee for Scientific Research Project (161-070110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Hang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, H., Wang, C., Cheng, Y. et al. Design and Properties of an Immobilization Enzyme System for Inulin Conversion. Appl Biochem Biotechnol 184, 453–470 (2018). https://doi.org/10.1007/s12010-017-2558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2558-5

Keywords

Navigation