Skip to main content
Log in

Rhamnolipid Production by Pseudomonas Aeruginosa GIM 32 Using Different Substrates Including Molasses Distillery Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A rhamnolipid production strain newly isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa GIM32 by its morphology and 16S rDNA sequence analysis. The effect of carbon source and carbon to nitrogen (C/N) ratio on rhamnolipids production was investigated. Palm oil was favorable as a carbon source for rhamnolipid production. The maximum biomass and rhamnolipid concentration were 8.24 g/L and 30.4 g/L, respectively, with an optimization medium containing 50 g/L palm oil and 5 g/L sodium nitrate. Molasses distillery wastewater as an unconventional substrate for rhamnolipid production was investigated. It was found that 2.6 g/L of rhamnolipids was produced; this amount was higher than that of past reports using wastewater as a substrate. In addition, 44% of the chemical oxygen demand of wastewater was removed at the same time under the optimization condition. Eleven kinds of different molecular weight rhamnolipid homologues were identified in the rhamnolipids obtained from molasses distillery wastewater by P. aeruginosa GIM32 by LC–MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lang, S., & Wullbrandt, D. (1999). Applied Microbiology and Biotechnology, 51, 22–32.

    Article  CAS  Google Scholar 

  2. Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61, 47–64.

    CAS  Google Scholar 

  3. Georgiou, G., Lin, S. C., & Sharma, M. M. (1992). Bio-Technology, 10, 60–65.

    CAS  Google Scholar 

  4. Mukherjee, S., Das, P., & Sen, R. (2006). Trends in Biotechnology, 24, 509–15.

    Article  CAS  Google Scholar 

  5. Nandy, T., Shastry, S., & Kaul, S. N. (2002). Journal of Environmental Management, 65, 25–38.

    Article  Google Scholar 

  6. Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Biomass Bioenergy, 19, 63–102.

    Article  CAS  Google Scholar 

  7. Shojaosadati, S. A., Khalilzadeh, R., Jalilzadeh, A., & Sanaei, H. R. (1999). Resources, Conservation and Recycling, 27, 125–38.

    Article  Google Scholar 

  8. Jain, D. K., Collinsthompson, D. L., Lee, H., & Trevors, J. T. (1991). Journal of Microbiological Methods, 13, 271–79.

    Article  Google Scholar 

  9. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–56.

    Article  CAS  Google Scholar 

  10. Deziel, E., Lepine, F., Milot, S., & Villemur, R. (2000). Biochimica Et Biophysica Acta Molecular and Cell Biology of Lipids, 1485, 145–52.

    Article  CAS  Google Scholar 

  11. Soberon-Chavez, G., Lepine, F., & Deziel, E. (2005). Applied Microbiology and Biotechnology, 68, 718–25.

    Article  CAS  Google Scholar 

  12. Perfumo, A., Banat, I. M., Canganella, F., & Marchant, R. (2006). Applied Microbiology and Biotechnology, 72, 132–38.

    Article  CAS  Google Scholar 

  13. Maier, R. M., & Soberon-Chavez, G. (2000). Applied Microbiology and Biotechnology, 54, 625–33.

    Article  CAS  Google Scholar 

  14. Zhu, Y., Gan, J. J., Zhang, G. L., Yao, B., Zhu, W. J., & Meng, Q. (2007). Journal of Zhejiang University Science A, 8, 1514–20.

    Article  CAS  Google Scholar 

  15. Sim, L., Ward, O. P., & Li, Z. Y. (1997). Journal of Industrial Microbiology & Biotechnology, 19, 232–38.

    Article  CAS  Google Scholar 

  16. Abalos, A., Maximo, F., Manresa, M. A., & Bastida, J. (2002). Journal of Chemical Technology and Biotechnology, 77, 777–84.

    Article  CAS  Google Scholar 

  17. Lee, K. M., Hwang, S. H., Ha, S. D., Jang, J. H., Lim, D. J., & Kong, J. Y. (2004). Biotechnology and Bioprocess Engineering, 9, 267–73.

    Article  CAS  Google Scholar 

  18. Wu, J. Y., Yeh, K. L., Lu, W. B., Lin, C. L., & Chang, J. S. (2008). Bioresource Technology, 99, 1157–64.

    Article  CAS  Google Scholar 

  19. Lee, Y., Lee, S. Y., & Yang, J. W. (1999). Bioscience, Biotechnology, and Biochemistry, 63, 946–47.

    Article  CAS  Google Scholar 

  20. Dubey, K., & Juwarkar, A. (2001). World Journal of Microbiology & Biotechnology, 17, 61–69.

    Article  CAS  Google Scholar 

  21. Patel, R. M., & Desai, A. J. (1997). Letters in Applied Microbiology, 25, 91–94.

    Article  CAS  Google Scholar 

  22. Wei, Y. H., Chou, C. L., & Chang, J. S. (2005). Biochemical Engineering Journal, 27, 146–54.

    Article  CAS  Google Scholar 

  23. Trummler, K., Effenberger, F., & Syldatk, C. (2003). European Journal of Lipid Science and Technology, 105, 563–71.

    Article  CAS  Google Scholar 

  24. Jia, C. Y., Kang, R. J., Zhang, Y. H., Cong, W., & Cai, Z. L. (2007). Bioresource Technology, 98, 967–70.

    Article  CAS  Google Scholar 

  25. Deziel, E., Lepine, F., Dennie, D., Boismenu, D., Mamer, O. A., & Villemur, R. (1999). Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 1440, 244–52.

    Article  CAS  Google Scholar 

  26. Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., et al. (2006). Bioresource Technology, 97, 2457–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by Teamwork Project of the Natural Science Foundation of Guangdong Province (9351007002000001), Guangdong Provincial Programs for Promoting the Integration of Production, Teaching and Research (2009B090300300299), and Guangdong-Hongkong Technology Cooperation Funding (2008A030700003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-ping Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Ah., Xu, My., Sun, W. et al. Rhamnolipid Production by Pseudomonas Aeruginosa GIM 32 Using Different Substrates Including Molasses Distillery Wastewater. Appl Biochem Biotechnol 163, 600–611 (2011). https://doi.org/10.1007/s12010-010-9066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9066-1

Keywords

Navigation