Skip to main content

Advertisement

Log in

Marine Diatom, Navicula sp. Strain JPCC DA0580 and Marine Green Alga, Chlorella sp. Strain NKG400014 as Potential Sources for Biodiesel Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Marine diatom, strain JPCC DA0580, and marine green microalga strain NKG400014 were selected as high neutral lipid-producers from marine microalgal culture collection toward biodiesel production. These strains were tentatively identified as Navicula sp. and Chlorella sp., respectively, by 18S rDNA analysis. Growth and lipid accumulation conditions of both strains were analyzed by changing nutrient concentrations in growth media and initial illuminance intensity. The highest productivity of fatty acid methyl ester (FAME) reached to 154 mg/L/week for NKG400014 and 185 mg/L/week for JPCC DA0580. Gas chromatography/mass spectrometry analysis indicates that FAME fraction from NKG400014 mainly contained 9-12-15-octadecatrienoate (C18:3) and that from JPCC DA0580 mainly contained methyl palmitate (C16:0) and methyl palmitoleate (C16:1). Furthermore, calorimetric analysis revealed that the energy content of strain was 4,233 ± 55 kcal/kg (i.e., 15.9 ± 0.2 MJ/kg) for NKG400014 and 6,423 ± 139 kcal/mg (i.e., 26.9 ± 0.6 MJ/kg) for JPCC DA0580, respectively. The value from JPCC DA0580 was equivalent to that of coal. The strains NKG400014 and JPCC DA0580 will become a promising resource that can grow as dominant species in the open ocean toward production of both liquid and solid biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rodolfi, L. Chini Zittelli, G. Bassi, N. Padovani, G. Biondi, N. Bonini, G. et al. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.

    Article  CAS  Google Scholar 

  2. Leon-Basares, R. Gonzalez-Ballester, D. Galvan, A. & Fernandez, E. (2004). Transgenic microalgae as green cell-factories. Trends in Biotechnology, 22, 45–52.

    Article  CAS  Google Scholar 

  3. Walker, T. L. Purton, S. Becker, D. K. & Collet, C. (2005). Microalgae as bioreactors. Plant Cell Reports, 24, 629–641.

    Article  CAS  Google Scholar 

  4. Hu, Q. Sommerfeld, M. Jarvis, E. Ghirardi, M. Posewitz, M. Seibert, M. et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, 54, 621.

    Article  CAS  Google Scholar 

  5. Rosenberg, J. N. Oyler, G. A. Wilkinson, L. & Betenbaugh, M. J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 19, 430–436.

    Article  CAS  Google Scholar 

  6. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  7. Gouveia, L. & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36, 269–274.

    Article  CAS  Google Scholar 

  8. Li, Q. Du, W. & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80, 749–756.

    Article  CAS  Google Scholar 

  9. Matsunaga, T. Matsumoto, M. Maeda, Y. Sugiyama, H. Sato, R. & Tanaka, T. (2009). Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production. Biotechnology Letters, 31, 1367–1372.

    Article  CAS  Google Scholar 

  10. Altschul, S. F. Gish, W. Miller, W. Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  11. Magnusson, M. Heimann, K. & Negri, A. P. (2008). Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Marine Pollution Bulletin, 56, 1545–1552.

    Article  CAS  Google Scholar 

  12. Feng, F. Y. Yang, W. Jiang, G. Z. Xu, Y. N. & Kuang, T. Y. (2005). Enhancement of fatty acid production of Chlorella sp.(Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium. Process Biochemistry, 40, 1315–1318.

    Article  CAS  Google Scholar 

  13. Xiong, W. Li, X. Xiang, J. & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.

    Article  CAS  Google Scholar 

  14. Scragg, A. H. Morrison, J. & Shales, S. W. (2003). The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme and Microbial Technology, 33, 884–889.

    Article  CAS  Google Scholar 

  15. Illman, A. M. Scragg, A. H. & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.

    Article  CAS  Google Scholar 

  16. Shifrin, N. S. & Chisholm, S. W. (1981). Pytoplankton lipids: Interspecific differences and effectws of nitrate, silicate and light-dark cycle 1. Journal of Phycology, 17, 374–384.

    Article  CAS  Google Scholar 

  17. Durrett, T. P. Benning, C. & Ohlrogge, J. (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant Journal, 54, 593.

    Article  CAS  Google Scholar 

  18. Knothe, G. (2006). Analyzing biodiesel: Standards and other methods. Journal of the American Oil Chemists' Society, 83, 823–833.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Matsunaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, M., Sugiyama, H., Maeda, Y. et al. Marine Diatom, Navicula sp. Strain JPCC DA0580 and Marine Green Alga, Chlorella sp. Strain NKG400014 as Potential Sources for Biodiesel Production. Appl Biochem Biotechnol 161, 483–490 (2010). https://doi.org/10.1007/s12010-009-8766-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8766-x

Keywords

Navigation