Skip to main content
Log in

Continuous Ethanol Production from Cassava Through Simultaneous Saccharification and Fermentation by Self-Flocculating Yeast Saccharomyces Cerevisiae CHFY0321

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a fermentor consisting of four linked stirred towers that can be used for simultaneous saccharification and fermentation (SSF) and for the accumulation of cell mass was applied to the continuous production of ethanol using cassava as the starchy material. For the continuous process with SSF, the pretreated cassava liquor and saccharification enzyme at total sugar concentrations of 175 g/L and 195 g/L were continuously fed to the fermentor with dilution rates of 0.014, 0.021, 0.031, 0.042, and 0.05 h−1. Considering the maximum saccharification time, the highest volumetric productivity and ethanol yield were observed at a dilution rate of 0.042 h−1. At dilution rates in the range of 0.014 h−1 to 0.042 h−1, high production rates were observed, and the yeast in the first to fourth fermentor showed long-term stability for 2 months with good performance. Under the optimal culture conditions with a feed sugar concentration of 195 g/L and dilution rate of 0.042 h−1, the ethanol volumetric productivity and ethanol yield were 3.58 g/L∙h and 86.2%, respectively. The cell concentrations in the first to fourth stirred tower fermentors were 74.3, 71.5, 71.2, and 70.1 g dry cell/L, respectively. The self-flocculating yeast, Saccharomyces cerevisiae CHFY0321, developed by our group showed excellent fermentation results under continuous ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balat, M., Balat, H., & Öz, C. (2008). Progress in energy and combustion science, 34, 551–573. doi:10.1016/j.pecs.2007.11.001.

    Article  CAS  Google Scholar 

  2. Bai, F. W., Anderson, W. A., & Moo-Yong, M. (2008). Biotechnology Advances, 26, 89–105. doi:10.1016/j.biotechadv.2007.09.002.

    Article  CAS  Google Scholar 

  3. Sanchez, Ó. J., & Cardona, A. (2008). Bioresource Technology, 99, 5270–5295. doi:10.1016/j.biortech.2007.11.013.

    Article  CAS  Google Scholar 

  4. Wyman, C. E. (2001). Applied Biochemistry & Biotechnology, 91, 5–21. doi:10.1385/ABAB:91-93:1-9:5.

    Article  Google Scholar 

  5. Thomsen, M. H., Holm-Nielsen, J. B., Oleskowicz-Popiel, P., & Thomsen, A. B. (2008). Applied Biochemistry & Biotechnology, 148, 23–33. doi:10.1007/s12010-008-8134-2.

    Article  CAS  Google Scholar 

  6. Chen, Y., Sharma-Shivappa, R. R., & Chen, C. (2007). Applied Biochemistry & Biotechnology, 143, 80–92. doi:10.1007/s12010-007-0030-7.

    Article  CAS  Google Scholar 

  7. Horn, S. J., Aasen, I. M., & Østgaard, K. (2000). Journal of Industrial Microbiology & Biotechnology, 25, 249–254. doi:10.1038/sj.jim.7000065.

    Article  CAS  Google Scholar 

  8. Prasad, S., Singh, A., & Joshi, H. C. (2007). Resources. Conservation and Recycling, 50, 1–39. doi:10.1016/j.resconrec.2006.05.007.

    Article  Google Scholar 

  9. Sassner, P., Galbe, M., & Zacchi, Z. (2008). Biomass Energy, 32, 422–430. doi:10.1016/j.biombioe.2007.10.014.

    Article  CAS  Google Scholar 

  10. Ueno, Y., Kurano, N., & Miyachi, S. (1998). Journal of Fermentation & Bioengineering, 86, 38–43. doi:10.1016/S0922-338X(98) 80031-7.

    Article  CAS  Google Scholar 

  11. Collins, K. Economic Issues related to biofuels; a written testimony for field hearing. available from: www.usda.gov. Accessed August 26, 2006.

  12. Hu, Z., Tan, P., & Pu, G. (2006). China. Applied Energy, 83, 819–840. doi:10.1016/j.apenergy.2005.09.002.

    Article  CAS  Google Scholar 

  13. Rubo, L., Wang, C., Zhang, C., Dai, D., & Pu, G. (2008). Journal of Cleaner Production, 16, 374–384. doi:10.1016/j.jclepro.2006.12.003.

    Article  Google Scholar 

  14. Quintero, J. A., Montoya, M. I., Sánchez, O. J., Giraldo, O. H., & Cardona, C. A. (2008). Energy, 33, 385–399. doi:10.1016/j.energy.2007.10.001.

    Article  CAS  Google Scholar 

  15. Xu, T. J., Zhao, X. Q., & Bai, F. W. (2005). Enzyme & Microbial Technology, 37, 634–640. doi:10.1016/j.enzmictec.2005.04.005.

    Article  CAS  Google Scholar 

  16. Andrietta, S. R., Steckelberg, C., & Andrietta, M. (2008). Bioresource Technology, 99, 3002–3008. doi:10.1016/j.biortech.2007.06.037.

    Article  CAS  Google Scholar 

  17. Shama, G. (1988). Process Biochemistry, 23, 138–145.

    CAS  Google Scholar 

  18. Verbelen, P. J., Schutter, D. P., Delvaux, F., Verstrepen, K. J., & Delvaux, F. R. (2006). Biotechnology Letters, 28, 1515–1525. doi:10.1007/s10529-006-9132-5.

    Article  CAS  Google Scholar 

  19. Nishizawa, Y., Mitani, Y., Fukunishi, K., & Nagai, S. (1984). Journal of Fermentation Technology, 62, 41–47.

    CAS  Google Scholar 

  20. Boks, P. A., & Eybergen, G. C. (1981). Biotechnology Letters, 10, 577–582. doi:10.1007/BF00133437.

    Article  Google Scholar 

  21. Lee, W. G., Park, B. G., Chang, Y. K., Chang, H. N., Lee, J. S., & Park, S. C. (2000). Biotechnology Progress, 16, 302–304. doi:10.1021/bp990130f.

    Article  CAS  Google Scholar 

  22. Nagashima, M., Azuma, M., Noguchi, S., Inuzuka, K., & Samejima, H. (1984). Biotechnology & Bioengineering, 26, 992–997. doi:10.1002/bit.260260826.

    Article  CAS  Google Scholar 

  23. Kuriyama, H., Ishibashi, H., Umeda, I., Murakami, T., & Kobayashi, H. (1993). Journal of Chemical Engineering Japan, 26, 429–431. doi:10.1252/jcej.26.429.

    Article  CAS  Google Scholar 

  24. Amutha, R., & Gunasekaran, P. (2001). Journal of Bioscience & Bioengineering, 92, 560–564. doi:10.1263/jbb.92.560.

    Article  CAS  Google Scholar 

  25. Graves, T., Narendranath, N. V., Dawson, K., & Power, R. (2006). Journal of Industrial Microbiology & Biotechnology, 33, 469–474. doi:10.1007/s10295-006-0091-6.

    Article  CAS  Google Scholar 

  26. Wang, B., Ge, X. M., Li, N., & Bai, F. W. (2006). Chinese Journal of Biotechnology, 22, 816–820. doi:10.1016/S1872-2075(06)60059-9.

    Article  CAS  Google Scholar 

  27. Bai, F. W., Chen, L. J., Zhang, Z., Anderson, W. A., & Moo-Young, M. (2004). Journal of Biotechnology, 110, 287–293. doi:10.1016/j.jbiotec.2004.01.017.

    Article  CAS  Google Scholar 

  28. Kida, K., Yamadaki, M., Asano, S. I., Nakata, T., & Sonoda, Y. (1989). Journal of Fermentation & Bioengineering, 68, 107–111. doi:10.1016/0922-338X(89) 90057-3.

    Article  CAS  Google Scholar 

  29. Kida, K., Asano, S. I., Yamadaki, M., Iwasaki, K., Yamaguchi, T., & Sonoda, Y. (1990). Journal of Fermentation & Bioengineering, 69, 39–45. doi:10.1016/0922-338X(90)90161-O.

    Article  CAS  Google Scholar 

  30. Mojović, L., Nikolić, S., Rakin, M., & Vukasinović, M. (2006). Fuel, 85, 1750–1755. doi:10.1016/j.fuel.2006.01.018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Wook Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, GW., Kang, HW., Moon, SK. et al. Continuous Ethanol Production from Cassava Through Simultaneous Saccharification and Fermentation by Self-Flocculating Yeast Saccharomyces Cerevisiae CHFY0321. Appl Biochem Biotechnol 160, 1517–1527 (2010). https://doi.org/10.1007/s12010-009-8653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8653-5

Keywords

Navigation