Skip to main content
Log in

Pretreatment of Whole-Crop Harvested, Ensiled Maize for Ethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To have all-year-round available feedstock, whole-crop maize is harvested premature, when it still contains enough moisture for the anaerobic ensiling process. Silage preparation is a well-known procedure for preserving plant material. At first, this method was applied to obtain high-quality animal feed. However, it was found that such ensiled crops are very suitable for bioenergy production. Maize silage, which consists of hardly degradable lignocellulosic material, hemicellulosic material, and starch, was evaluated for its potential as a feedstock in the production of bioethanol. It was pretreated at low severity (185 °C, 15 min) giving very high glucan (∼100%) and hemicellulose recoveries (<80%)—as well as very high ethanol yield in simultaneous saccharification and fermentation experiments (98% of the theoretical production based on available glucan in the medium). The theoretical ethanol production of maize silage pretreated at 185 °C for 15 min without oxygen or catalyst was 392 kg ethanol per ton of dry maize silage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomsen, A. B., Medina, C., & Ahring, B. K. (2003). In H. Larsen, J. Kossmann, & L. S. Petersen (Eds.), Risø energy report 2 (pp. 40–44).

  2. Hazell, P., & Pachauri, R. K. (2006). 2020 Focus No. 14, November. http://www.ifpri.org/2020/focus/focus14.asp#dl.

  3. Eurobserver (2006). Biofuels barometer May, pp. 57–66.

  4. EU (2007). Brussels European Council 8–9 March—Presidency Conclusions (http://mediacontent.ig.publicus.com/PDF/IG35268339.PDF)

  5. Thomsen, M. H., Thygesen, A., Christensen, B. H., Larsen, J., Jørgensen, H., & Thomsen, A. B. (2006). Applied Biochemistry and Biotechnology, 129–132, 448–460.

    Google Scholar 

  6. Klinke, H. B., Olsson, L., Thomsen, A. B., & Ahring, B. K. (2003). Biotechnology and Bioengineering, 3(81), 738–747.

    Article  Google Scholar 

  7. Olsson, L., & Hahn-Hagerdal, B. (1993). Process Biochemistry, 28, 249–257.

    Article  CAS  Google Scholar 

  8. Schmidt, A. S., & Thomsen, A. B. (1989). Bioresource Technology, 64, 139–151.

    Article  Google Scholar 

  9. McGinnis, G. D. (1983a). WWWMCE. Industrial & Engineering Chemistry Product Research and Development, 22, 352–357.

    Article  CAS  Google Scholar 

  10. Lee, Y. V., Iyer, P., & Torget, R. W. (1999). Advances in Biochemical Engineering, Biotechnology, 65, 93–115.

    CAS  Google Scholar 

  11. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.

    Article  CAS  Google Scholar 

  12. McGinnis, G. D., Wilson, W. W., Prince, S. E., & Chen, C. C. (1983b). Industrial & Engineering Chemistry Product Research and Development, 22, 633–636.

    Article  CAS  Google Scholar 

  13. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577.

    Article  CAS  Google Scholar 

  14. Ahring, B. K., Licht, D., Schmidt, A. S., Sommer, P., & Thomsen, A. B. (1999). Bioresource Technology, 68, 3–9.

    Article  CAS  Google Scholar 

  15. Palmqvist, E., Hahn-Hägerdal, B., Szengyel, Z., Zacchi, G., & Reczey, K. (1997). Enzyme and Microbial Technology, 20, 286–293.

    Article  CAS  Google Scholar 

  16. Pedersen, C. Aa. (2006). Oversigt over Landsforsøgene 2006, Dansk Landbrugsrådgivning, Landscenteret-Planteavl (Danish).

  17. Holm-Nielsen, J. B., Madsen, M., & Popiel, P. O. (2006). Proceedings: World Bioenergy 2006, Conference for Biomass for Energy, 05/2006, Jönköbing Sweden.

  18. Weinberg, Z. G., & Munc, R. E. (1996). FEMS Microbiology Reviews, 19, 53–68.

    Article  CAS  Google Scholar 

  19. Varga, E., Schmidt, A. S., Reczey, K., & Thomsen, A. B. (2003). Applied Biochemistry and Biotechnology, 104, 37–50.

    Article  CAS  Google Scholar 

  20. Thomsen, M. H., Popiel, P. O., Lisiecki, P., Varga, E., Thomsen, A. B., Esbensen, K. H., et al (2005). Proceedings: 14th European Biomass Conference and Exhibitons, 17–21 October 2005, Paris, France.

  21. Petersson, A., Thomsen, M. H., Haugaard-Nielsen, H., & Thomsen, A. B. (2007). Biomass & Bioenergy, 31, 812–819.

    Article  CAS  Google Scholar 

  22. Martín, C., Klinke, H., & Thomsen, A. B. (2007). Enzyme and Microbial Technology, 40(3), 426–432.

    Article  Google Scholar 

  23. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Lidén, G. (1999). Journal of Bioscience and Bioengineering, 87, 169–174.

    Article  CAS  Google Scholar 

  24. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Lidén, G. (2000). Applied Microbiology and Biotechnology, 53, 701–708.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tomas Fernqvist from Risø National Laboratory. Dairy Farm, Farup Ribe is thanked for supplying good quality maize silage. Risø National Laboratory, Technical University of Denmark and Højteknologifonden, Denmark are thanked for financial support given to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Thomsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, M.H., Holm-Nielsen, J.B., Oleskowicz-Popiel, P. et al. Pretreatment of Whole-Crop Harvested, Ensiled Maize for Ethanol Production. Appl Biochem Biotechnol 148, 23–33 (2008). https://doi.org/10.1007/s12010-008-8134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8134-2

Keywords

Navigation