Skip to main content
Log in

Periodic Fermentor Yield and Enhanced Product Enrichment from Autonomous Oscillations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Four decades of work have clearly established the existence of autonomous oscillations in budding yeast culture across a range of operational parameters and in a few strains. Autonomous oscillations impact substrate conversion to biomass and products. Relatively little work has been done to quantify yield in this case. We have analyzed the yield of autonomously oscillating systems, grown under different conditions, and demonstrate that it too oscillates. Using experimental data and mathematical models of yeast growth and division, we demonstrate strategies to increase the efficient recovery of products. The analysis makes advantage of the population structure and synchrony of the system and our ability to target production within the cell cycle. While oscillatory phenomena in culture have generally been regarded with trepidation in the engineering art of bioprocess control, our results provide further evidence that autonomously oscillating systems can be a powerful tool, rather than an obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dumas, B., Masson, C., Lebrun, K., & Achstetter, T. (2006). Hydrocortisone made in yeast: metabolic engineering turns a unicellular microorganism into a drug-synthesis factory. Biotechnology Journal, 1, 299–307.

    Article  CAS  Google Scholar 

  2. Kjeldsen, T., Ludvigsen, S., Diers, I., Balshmidt, P., Sorensen, A., & Kaarshold, N. (2002). Engineering-enhanced protein secretory expression in yeast with applications to insulin. Journal of Biological Chemistry, 277, 18245–18248.

    Article  CAS  Google Scholar 

  3. Szczebara, F., Changelier, C., Villeret, C., Masurel, C., Masurel, A., Bourot, S., et al. (2003). Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nature, 21, 143–149.

    Article  CAS  Google Scholar 

  4. Thim, L., Hansen, M., Norris, K., Holegh, I., Boel, E., Forstrom, J., et al. (1986). Secretion and processing of insulin precursors in yeast. PNAS, 83, 6766–6770.

    Article  CAS  Google Scholar 

  5. Chan, E., Chen, C., & Chen, L. (1992). Recovery of invertase from ethanol fermentation broth. Biotechnology Letters, 14, 573–576.

    Article  CAS  Google Scholar 

  6. Uchiyama, K., Morimoto, M., Yokoyama, Y., & Shioya, S. (1996). Cell cycle dependency of rice α-amylase production in a recombinant yeast. Biotechnology and Bioengineering, 54, 262–271.

    Article  Google Scholar 

  7. Bansal, V., Roychoudhurry, P., Mattiasson, B., & Kumar, A. (2006). Recovery of urokinase from integrated mammalian cell culture cryogel bioreactor and purification of the enzyme using p-aminobenzamidine affinity chromatography. Journal of Molecular Recognition, 19, 332–339.

    Article  CAS  Google Scholar 

  8. Sajc, L., Grubisic, D., & Novakovic, G. (2000). Bioreactors for plant engineering: An outlook for further research. Biochemical Engineering Journal, 4, 89–99.

    Article  Google Scholar 

  9. Smith, C. (2005). Striving for purity: Advances in protein purification. Nature, 2, 71–77.

    CAS  Google Scholar 

  10. Stowers, C., & Boczko, E. M. (2007). Reliable cell disruption in yeast. Yeast, 24, 533–541.

    Article  CAS  Google Scholar 

  11. Gleeson, M., White, C., Meininger, D., & Komives, A. (1998). Generation of protease-deficient strains and their use in heterologous protein expression. Methods in Molecular Biology, 103, 81–94.

    CAS  Google Scholar 

  12. Alberghina, L., Mariani, L., Martegani, E., & Vanoni, M. (1983). Analysis of protein distribution in budding yeast. Biotechnology and Bioengineering, 15, 1295–1310.

    Article  Google Scholar 

  13. Vanoni, M., Vai, M., Popolo, L., & Alberghina, L. (1983). Structural heterogeneity in populations of budding yeast Saccharomyces cerevisiae. Journal of Bacteriology, 156, 1282–1291.

    CAS  Google Scholar 

  14. Hortso, M. (1996). Population balance models of autonomous periodic dynamics in microbial cultures: Their use in process optimization. Canadian Journal of Chemical Engineering, 74, 612–620.

    Article  Google Scholar 

  15. Walker, G. (1999). Synchronization of yeast cell populations. Methods in Cell Science, 21, 87–93.

    Article  CAS  Google Scholar 

  16. Stowers, C., Hackworth, D., Mischaikow, K., Gedeon, T., & Boczko, E. (2008). Extending synchrony and deconvolving population effects in budding yeast through an analysis of volume growth with a structured Leslie model. Theoretical Population Biology (in press).

  17. Richard, P. (2003). The rhythm of yeast. FEMS Microbiology Reviews, 27, 547–557.

    Article  CAS  Google Scholar 

  18. Dawson, P. (1972). Continuous synchronous culture—The production of extracellular enzymes by continuous phased culture of Bacillus subtilis. Proceedings of the IV IFS: Ferment. Technol. Today, pp. 121–128.

  19. Jules, M., Francois, J., & Parrou, J. (2005). Autonomous oscillations in Saccharomyces cerevisiae during batch cultures of trehalose. FEBS Journal, 272, 1490–1500.

    Article  CAS  Google Scholar 

  20. Bellgardt, K. H. (1994). Analysis of synchronous growth of bakers yeast. Part I: Development of a theoretical model for sustained oscillations. Journal of Biotechnology, 35, 19–33.

    Article  CAS  Google Scholar 

  21. Bellgardt, K. H. (1994). Analysis of synchronous growth of bakers yeast. Part II: Development of a theoretical model for sustained oscillations. Journal of Biotechnology, 35, 35–49.

    Article  CAS  Google Scholar 

  22. Beuse, M., Bartling, R., Kopmann, A., Deikmann, H., & Thoma, M. (1998). Effect of the dilution rate on the mode of oscillation in continuous cultures of Saccharomyces cerevisiae. Journal of Biotechnology, 61, 15–31.

    Article  CAS  Google Scholar 

  23. Crooke, P., Tanner, R., & Park, D. (1986). Time dependent differential yield as a scale-up parameter in enzyme and fermentation reactors. Biotechnology Progress, 2, 40–47.

    Article  CAS  Google Scholar 

  24. Essajee, C., & Tanner, R. D. (1979). The effect of extracellular variables on the stability of continuous baker’s yeast–ethanol fermentation process. Process Biochemistry, 25, 16–21.

    Google Scholar 

  25. Heinzle, E., Dunn, I., Furukawa, K., & Tanner, R. D. (1982). Modeling of sustained oscillations observed in continuous culture of Saccharomyces cerevisiae. In A. Halme (Ed.), Proceedings of the 1st IFAC Workshop (pp. 57–65). Oxford: Pergamon.

    Google Scholar 

  26. Murray, D., Klevecz, R., & Lloyd, D. (2003). Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Experimental Cell Research, 287, 10–15.

    Article  CAS  Google Scholar 

  27. Tu, B. P., Kudlicki, A., Rowicka, M., & McKnight, S. L. (2006). Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes. Science, 310, 1152–1158.

    Article  CAS  Google Scholar 

  28. Xu, Z., & Tsurugi, K. (2006). A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. FEBS Journal, 273, 1696–1709.

    Article  CAS  Google Scholar 

  29. Aldridge, S. (1996). Downstream processing needs a boost. Genetic Engineering and Biotechnology News, 26, 1.

    Google Scholar 

  30. Ramesh, M., Charyulu, N., Chand, N., & Lonsane, B. (2004). Non-growth associated production of enzymes in solid state fermentation systems: Its mathematical description for two enzymes produced by Bacillus licheniformis. Bioprocess and Biosystems Engineering, 15, 289–294.

    Google Scholar 

  31. Cos, O., Ramon, R., Luis Montesinos, J. L., & Valero, F. (2006). Operational strategies, monitoring and control of heterologous protein production in the methylotrophis yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories, 5, 17.

    Article  Google Scholar 

  32. Taufer, M., An, C., Kerstens, A., & Brooks, C. (2006). Predictor @ home: A “protein structure prediction supercomputer” based on global computing. IEEE Transactions on Parallel and Distributed Systems, 17, 786–796.

    Article  Google Scholar 

  33. Qui, J., & Noble, W. (2008). Predicting co-complexed protein pairs from heterogeneous data. PLOS Computation Biology, 4, e1000054.

    Article  CAS  Google Scholar 

  34. Hartwell, L. (1974). Saccharomyces cerevisiae cell cycle. Bacteriological Reviews, 38, 164–198.

    CAS  Google Scholar 

  35. Hartwell, L., & Unger, M. (1977). Unequal division in Saccharomyces cerevisiae and its implications for the control of the cell division. Journal of Cell Biology, 75, 422–435.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Peter Kotter from Johan Wolfgang Goethe-University for providing the yeast strain CEN.PK.113-7D and Rick Haselton for helpful discussion and generous use of his lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik M. Boczko.

Appendices

Appendix 1: Asymptotic Periodicity

Let the population density be periodic with period T. This means that P(t + T,s) = p(t) for all s. From this, it follows that I(t) is periodic with period T:

$$I\left( {t + T} \right) = \left\langle {p\left( {t + T,s} \right),f\left( s \right)} \right\rangle = \left\langle {p\left( {t,s} \right),f\left( s \right)} \right\rangle = I\left( t \right)$$

where we have used the inner product notation to represent the integrals from Eq. 4. Now consider the function F(t). Using the well-known variation of parameters solution of Eq. 5, we have that

$$F\left( t \right) = e^{ - Dt} \left[ {\int\limits_0^t {e^{Ds} I\left( s \right){\text{d}}s + C} } \right]\quad {\text{where}}\;C\;{\text{is}}\;{\text{an}}\;{\text{integration}}\;{\text{constant}}{\text{.}}$$

Using the periodicity of I, we have:

$${\eqalign{ & F{\left( {t + T} \right)} = e^{{ - D\,t}} {\left[ {{\int\limits_0^{t + T} {e^{{D{\left( {s - T} \right)}}} I{\left( s \right)}{\mathop{\rm d}\nolimits} s + C} }} \right]} \cr & = e^{{ - D\,t}} {\left[ {{\int\limits_0^{t + T} {e^{{D{\left( {s - T} \right)}}} I{\left( {s - T} \right)}{\mathop{\rm d}\nolimits} s + C} }} \right]} \cr & = e^{{ - D\,t}} {\left[ {{\int\limits_{ - T}^t {e^{{D\,s}} I{\left( s \right)}{\mathop{\rm d}\nolimits} s + C} }} \right]}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,. \cr & = e^{{ - D\,t}} {\left[ {{\int\limits_{ - T}^t {e^{{D\,s}} I{\left( s \right)}{\mathop{\rm d}\nolimits} s + {\int\limits_{ - T}^0 {e^{{Ds}} I{\left( s \right)}{\mathop{\rm d}\nolimits} s + } }C} }} \right]} \cr & = F{\left( t \right)} + e^{{ - D\,t}} {\int\limits_{ - T}^t {e^{{D\,s}} I{\left( s \right)}{\mathop{\rm d}\nolimits} s} } \cr} }$$

Since the last integrand is finite and e −Dt limits to 0 exponentially as t goes to ∞, F(t) is an asymptotically periodic with period T.

Appendix 2: Leslie Model of Yeast Growth and Division

$${\left[ {\begin{array}{*{20}c} {{f^{0}_{0} {\left( {t + \tau _{0} } \right)}}} \\ {{f^{0}_{1} {\left( {t + \tau _{1} } \right)}}} \\ {{f^{0}_{2} {\left( {t + \tau _{2} } \right)}}} \\ { \vdots } \\ {{f^{0}_{n} {\left( {t + \tau _{n} } \right)}}} \\ \end{array} } \right]} = {\left[ {\begin{array}{*{20}c} {1} & {1} & {1} & { \cdots } & {1} & {1} \\ {1} & {0} & {0} & { \cdots } & {0} & {0} \\ {0} & {1} & {0} & { \cdots } & {0} & {0} \\ { \vdots } & { \vdots } & { \vdots } & { \ddots } & { \vdots } & { \vdots } \\ {0} & {0} & {0} & { \cdots } & {1} & {0} \\ \end{array} } \right]}\;{\left[ {\begin{array}{*{20}c} {{f^{0}_{0} {\left( t \right)}}} \\ {{f^{0}_{1} {\left( t \right)}}} \\ {{f^{0}_{2} {\left( t \right)}}} \\ { \vdots } \\ {{f^{0}_{n} {\left( t \right)}}} \\ \end{array} } \right]}$$

where:

$$\left\{ {\matrix {f_{\operatorname{in} }^i \left( t \right) = \operatorname{Total} \;flux\;entering\;the\;i - th\;\operatorname{generation} \;at\;time\;t} \\ {f_i^0 \left( t \right) = \operatorname{Daughter} \;cells\;produced\;from\;a\;division\;in\;age\;\operatorname{class} \;i\;\operatorname{at} \;time\;t} \\ {\tau _i = \operatorname{Flux} \;residence\;time,\;i.e.\;cell\;cycle\;length} \ } \right\}.$$

The Leslie model [16] used to calculate yeast growth and division encodes as a mathematical object the process flow depicted at the top of Fig. 10. The process flow has age descending from daughter cells with no scars, P 0, at the top to cells with arbitrarily many scars, P n, at the bottom. Cells belonging to each of these age classes traverse their separate cell cycles, shown as the horizontal thick black lines. The time it takes a cell of age, k, to traverse their cell cycle is τ k. The values of τ used are shown in Table 3 along with the temporal position of bud emergence. The thin black lines with arrows indicate the directions of possible flux due to cell divisions. Each arrow corresponds to a 1 in the matrix representation of the process at the bottom of Fig. 10.

Fig. 10
figure 10

The top schematic represents the process of yeast growth and division. Each age class is represented by a bold horizontal line and corresponding residence time, τ. The age classes are organized by replicative age, with the daughter cells, denoted P0, as the first grid. Higher generation parent cells are listed below. Each cell division can be characterized by producing a daughter cell back at the beginning of the P0 grid and a parent of the next highest age class. This process can be represented by a Leslie matrix as shown by the bottom panel

Table 3 Parameters used in the Leslie model simulations.

Given an initial population distribution, the matrix model is iterated to produce the dynamics. Typically, such a system would produce asynchronous exponential growth. Autonomous oscillations result from an additional feedback. We have introduced a delay model to produce population oscillation. In the delay model, a threshold, T R, is introduced. Once the density of cell in the S-phase of the cell cycle reaches T R or above, any cells in a 10% strip proximal to S become delayed in their cell cycle progression. In the simulations described in Fig. 8, T R was 20% of the total culture density. The S-phase is delimited on the left by bud emergence (BE) as described in Table 3. The algorithm used to implement this model is freely available from the authors upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stowers, C.C., Robertson, J.B., Ban, H. et al. Periodic Fermentor Yield and Enhanced Product Enrichment from Autonomous Oscillations. Appl Biochem Biotechnol 156, 59–75 (2009). https://doi.org/10.1007/s12010-008-8486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8486-7

Keywords

Navigation