Skip to main content
Log in

Importance of the cultivation history for the response of Escherichia coli to oscillations in scale-down experiments

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Large-scale bioreactors are inhomogeneous systems, in which the fluid phase expresses concentration gradients. They depend on the mass transfer and fluid dynamics in the reactor, the feeding strategy, the cell-specific substrate uptake parameters, and the cell density. As high cell densities are only obtained at low specific growth rates, it is necessary to investigate the cellular responses to oscillations in particular under such conditions, an issue which is mostly neglected. Instead, the feed oscillations are often started directly after the batch phase, when the specific growth rate is close to the maximum. We show here that the cultivation mode before oscillations are started has a tremendous effect on the metabolic responses. In difference to cells, which were pre-grown under batch conditions at a high growth rate, Escherichia coli cells that were pre-grown under glucose limitation at a low growth rate accumulate short-chain fatty acids (acetate, lactate, succinate) and glycolysis-related amino acids to a higher extent in a two-compartment scale-down bioreactor. Thus, cells which enter oscillations from a lower specific growth rate seem to react more sensitive to oscillations than cells that are subjected to oscillations directly after a batch phase. These results are interesting in designing reliable scale-down systems, which better reflect large-scale bioprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schweder T, Krüger E, Xu B, Jürgen B, Blomsten G, Enfors SO, Hecker M (1999) Monitoring of genes that respond to process-related stress in large-scale bioprocesses. Biotechnol Bioeng 65(2):151–159

    Article  CAS  PubMed  Google Scholar 

  2. Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O’Beirne D et al (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85(2):175–185

    Article  CAS  PubMed  Google Scholar 

  3. Delvigne F, Goffin P (2014) Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol J 9(1):61–72

    Article  CAS  PubMed  Google Scholar 

  4. Bylund F, Castan A, Mikkola R, Veide A, Larsson G (2000) Influence of scale-up on the quality of recombinant human growth hormone. Biotechnol Bioeng 69(2):119–128

    Article  CAS  PubMed  Google Scholar 

  5. Baez A, Flores N, Bolivar F, Ramirez OT (2011) Simulation of dissolved CO(2) gradients in a scale-down system: a metabolic and transcriptional study of recombinant Escherichia coli. Biotechnol J 6(8):959–967

    Article  CAS  PubMed  Google Scholar 

  6. Neubauer P, Junne S (2016) Scale-up and scale-down methodologies for bioreactors. In: Mandenius CF (ed) Bioreactors: design, operation and novel applications. Wiley, London, pp 323–354

    Chapter  Google Scholar 

  7. Hewitt CJ, Nienow AW (2007) The scale-up of microbial batch and fed-batch fermentation processes. Adv Appl Microbiol 62:105–135

    Article  CAS  PubMed  Google Scholar 

  8. Lapin A, Schmid J, Reuss M (2006) Modeling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor—a structured–segregated approach. Chem Eng Sci 61(14):4783–4797

    Article  CAS  Google Scholar 

  9. Neubauer P, Junne S (2010) Scale-down simulators for metabolic analysis of large-scale bioprocesses. Curr Opin Biotechnol 21(1):114–121

    Article  CAS  PubMed  Google Scholar 

  10. Brognaux A, Thonart P, Delvigne F, Neubauer P, Twizere JC, Francis F, Gorret N (2013) Direct and indirect use of GFP whole cell biosensors for the assessment of bioprocess performances: design of milliliter scale-down bioreactors. Biotechnol Prog 29(1):48–59

    Article  CAS  PubMed  Google Scholar 

  11. Buchholz J, Graf M, Freund A, Busche T, Kalinowski J, Blombach B, Takors R (2014) CO(2) /HCO(3)(−) perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(20):8563–8572

    Article  CAS  PubMed  Google Scholar 

  12. Lin HY, Neubauer P (2000) Influence of controlled glucose oscillations on a fed-batch process of recombinant Escherichia coli. J Biotechnol 79(1):27–37

    Article  CAS  PubMed  Google Scholar 

  13. Xu B, Jahic M, Blomsten G, Enfors SO (1999) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl Microbiol Biotechnol 51(5):564–571

    Article  PubMed  Google Scholar 

  14. Lin HY, Mathiszik B, Xu B, Enfors SO, Neubauer P (2001) Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli. Biotechnol Bioeng 73(5):347–357

    Article  CAS  PubMed  Google Scholar 

  15. Ryall B, Eydallin G, Ferenci T (2012) Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 76(3):597–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jenzsch M, Gnoth S, Kleinschmidt M, Simutis R, Lübbert A (2006) Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile. Bioprocess Biosyst Eng 29(5–6):315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pham HTB, Larsson G, Enfors S-O (1999) Precultivation technique for studies of microorganisms exhibiting overflow metabolism. Biotechnol Tech 13(1):75–80

    Article  CAS  Google Scholar 

  18. Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36(4):525–557

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H et al (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2:2006 0007

    Article  PubMed  PubMed Central  Google Scholar 

  20. Soini J, Ukkonen K, Neubauer P (2008) High cell density media for Escherichia coli are generally designed for aerobic cultivations—consequences for large-scale bioprocesses and shake flask cultures. Microb Cell Fact 7:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Junne S, Klingner A, Kabisch J, Schweder T, Neubauer P (2011) A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol J 6(8):1009–1017

    Article  CAS  PubMed  Google Scholar 

  22. Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P (2010) High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Fact 9:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krause M, Ukkonen K, Haataja T, Ruottinen M, Glumoff T, Neubauer A, Neubauer P, Vasala A (2010) A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microb Cell Fact 9:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186(6):1769–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anane E, Lòpez CDC, Neubauer P, Cruz Bournazou MN (2017) Modelling overflow metabolism in Escherichia coli by acetate cycling. Biochem Engin J 125(15):23–30

    Article  CAS  Google Scholar 

  26. Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L, Vilu R (2010) Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 4:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by project no. NE1360/2-1 of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Neubauer.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brand, E., Junne, S., Anane, E. et al. Importance of the cultivation history for the response of Escherichia coli to oscillations in scale-down experiments. Bioprocess Biosyst Eng 41, 1305–1313 (2018). https://doi.org/10.1007/s00449-018-1958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1958-4

Keywords

Navigation