Skip to main content
Log in

Production and Characterization of the Exopolysaccharides Produced by Agaricus brasiliensis in Submerged Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the work was to study the production of the exopolysaccharides by Agaricus brasiliensis and the isolation of exopolysaccharides (EPSs) with biological effects. A brasiliensis LPB03 was cultured in submerged fermentation in a medium containing glucose, yeast extract, hydrolyzed soybean protein, and salts (pH 6.1) at 29 °C and 120 rpm for 144 h. The maximum biomass and EPS yield was 7.80 ± 0.01 and 1,430.70 ± 26.75 mg/L, respectively. To isolate the produced EPSs, two methods were compared: (1) with alcohol precipitation and (2) treatment with tricloroacetic acid (TCA), followed by alcohol precipitation. The use of TCA facilitated the purification of the EPS, reducing the amount of the contaminant soy proteins. For monosaccharide identification, the EPSs were hydrolyzed, derivatized to alditol acetates, and analyzed by gas chromatography (GC) and GC-mass spectrometry, which showed the presence (in molar percentage) of mannose (58.7), galactose (21.4), and glucose (13.1) as major sugars, with lower amounts of rhamnose (3.9) and xylose (2.8). Scanning electron microscopy was used to observe the morphological structure of the EPS. The experiments in vivo including EPS in the mice diet during 8 weeks indicated the hipocholesteremic and hypoglycemic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bernardshaw, S., Johnson, E., & Hetland, G. (2005). Scandinavian Journal of Immunology, 63, 393–398.

    Article  Google Scholar 

  2. Kidd, P. M. (2000). Alternative Medicine Review, 5, 4–27.

    CAS  Google Scholar 

  3. Borschers, A. T., Keen, L. C., & Gershwin, M. E. (2004). Experimental Biology and Medicine, 229, 393–406.

    Google Scholar 

  4. Lee, Y. L., Kim, H. J., et al. (2003). Experimental Animals, 52, 371–375.

    Article  CAS  Google Scholar 

  5. Takeda, Y., Togashi, H. J., et al. (2000). Gastroenterologia & Hepatologia, 15, 1079–1086.

    Article  CAS  Google Scholar 

  6. Lindequist, U., Niedermeyer, T. H. J., & Jülich, W.-D. (2005). Review e CAM, 2(3), 285–299.

    Google Scholar 

  7. Wasser, S. P., & Didukh, M. Y. (2002). Int J Med Mushr, 4, 267–290.

    Google Scholar 

  8. Urben, A. F. (2005). In V Congresso Latino Americano de Micologia. Brasília, 203–205.

  9. Itoh, H., Ito, H., & Amano, H. (1994). Japanese Journal of Pharmacology, 66, 265–271.

    Article  CAS  Google Scholar 

  10. Adachi, Y., Suzuki, T., et al. (2002). International Journal of Medicinal Mushrooms, 4, 95–109.

    CAS  Google Scholar 

  11. Mizuno, M., Morimoto, M., et al. (1998). Bioscience Biotechnology and Biochemistry, 62(3), 434–437.

    Article  CAS  Google Scholar 

  12. Mizuno, T., Hagiwara, T., et al. (1990). Agricultural and Biological Chemistry, 54(11), 2889–2896.

    CAS  Google Scholar 

  13. Zhang, M., & Cui, S. W. (2007). Trends in Food Science & Technology, 18, 4–19.

    Article  Google Scholar 

  14. Soccol, C. R., & Vandenberghe, L. P. S. (2003). Biochemical Engineering Journal, 13, 205–218.

    Article  CAS  Google Scholar 

  15. Maraschin, M. (1998). Ph.D. thesis, Federal University of Paraná, Brazil.

  16. Ruas-Madiedo, R., & Reyes-Gavilán, C. G. (2005). American Dairy Science Association, 88, 843–856.

    CAS  Google Scholar 

  17. Yang, B. Y., Gray, J. S. S., & Montgomery, R. (1999). Carbohydrate Research, 316, 138–154.

    Article  CAS  Google Scholar 

  18. Jodon, M. H., & Royse, D. J. (1979). Agricultural Experiment Station Bulletin, pp. 258–254.

  19. Dalla Santa, H. S. (2006). Ph.D. thesis, Universidade federal of Paraná, Curitiba, Brazil.

  20. Nakasone, K. K., Peterson, S. W., & Jong, S.-C. (2004). In D. Cella, & K. Sonnack (Eds.) Biodiversity of fungi. Burlington, MA: Elsevier.

    Google Scholar 

  21. Figueiredo, M. B. (2001). Biológico, January, pp. 73–82.

  22. Fan, L. (2003), Ph.D. thesis, Universidade Federal do Paraná, Curitiba, Brazil.

  23. Rubel, R. (2006), Ph.D. thesis, Universidade Federal do Paraná, Curitiba, Brazil.

  24. Cuesta, G., Suarez, N., et al. (2002). Journal of Microbiological Methods, 52, 69–73.

    Article  Google Scholar 

  25. Dubois, M., Gilles, K. A., et al. (1956). Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  26. Nelson, A. (1944). The Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., et al. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  28. Wolfrom, M. L., & Thompson, A. (1963). Meth. Carbohydr. Chem., 2, 65–68.

    CAS  Google Scholar 

  29. Neto, C., & Oliveira, P. L. (1977). Estatistic, Edgard Blucher.

  30. Chang, H. L., Chao, G. R., Chen, C. C., & Mau, J. L. (2001). Food Chemistry, 74, 203–207.

    Article  CAS  Google Scholar 

  31. Stijve, T., Amazonas, M. A. A., & Giller, V. (2002). Deutsche Lebensmittel-Rundschao, 98, 448–453.

    CAS  Google Scholar 

  32. Ebina, T., & Fujimiya, Y. (1998). Biotherapy, 11, 259–265.

    Article  CAS  Google Scholar 

  33. Ito, H., Hidaka, H., & Sugiura, M. (1997). Japanese Journal of Pharmacology, 29, 953–957.

    Article  Google Scholar 

  34. Takaku, T., Kimura, Y., & Okuda, H. (2001). Journal of Nutrition, 131, 1409–1413.

    CAS  Google Scholar 

  35. Fan, L., Soccol, A. T., et al. (2005). LWT—Food Science and Technology, 40, 30–35.

    Google Scholar 

  36. Gern, J. C. (2006). M.Sc. dissertation, Universidade federal do Paraná, Curitiba, Brazil.

  37. Lin, J., & Yang, S. (1996). Journal of Microbiology, Immunology and Infection, 39, 98–108.

    Google Scholar 

  38. Dong, Q., Yao, J., et al. (2002). Carbohydrate Research, 337, 1417–1421.

    Article  CAS  Google Scholar 

  39. Blakeney, A. B., Harris, P. J., Henry, R. J., & Stone, B. A. (1983). Carbohydrate Research, 113, 291–299.

    Article  CAS  Google Scholar 

  40. Chen, S. C., & Lu, M.-K. (2005). FEMS Microbiology Letters, 249(2), 247–54.

    Article  CAS  Google Scholar 

  41. Jodon, M. H., & Royse, D. J. (1979). Agricultural Experiment Station Bulletin, pp. 258–254.

  42. Mizuno, T. (1999). Int. J. Med. Mushroom, 1, 9–30.

    CAS  Google Scholar 

  43. Kim, Y. W., Kim, K. H., Chi, H. J., & Lee, D. S. (2005). Biotechnology Letters, 27, 483–487.

    Article  CAS  Google Scholar 

  44. Lo, H.-C., Tsai, F.-A., et al. (2006). Life Sciences, 78(17), 1957–1966.

    Article  CAS  Google Scholar 

  45. Swanson-Flatt, S. K., et al. (1989). Acta Diabetologia, 26, 51–55.

    Article  Google Scholar 

  46. Takaku, T., Kimura, Y., & Kuda, H. (2001). Journal of Nutrition, 131, 1409–1413.

    CAS  Google Scholar 

  47. Pinheiro, F., Faria, R. R., et al. (2003). Food and Chemical Toxicology, 41, 1543–1550.

    Article  CAS  Google Scholar 

  48. Mizuno, T., Hagiwara, T., et al. (1990). Agricultural and Biological Chemistry, 54(11), 2889–2896.

    CAS  Google Scholar 

  49. Mizuno, M. K., Minato, H., et al. (1999). Biochemistry and Molecular Biology International, 47, 707–714.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Soccol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, L.F.O., Habu, S., Gern, J.C. et al. Production and Characterization of the Exopolysaccharides Produced by Agaricus brasiliensis in Submerged Fermentation. Appl Biochem Biotechnol 151, 283–294 (2008). https://doi.org/10.1007/s12010-008-8187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8187-2

Keywords

Navigation