Skip to main content
Log in

An experimental investigation on surface quality of 3D metal printed SS316L by direct metal laser sintering technique

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The use of additive manufacturing, specifically 3D printing, has significantly altered the manufacturing process for complex geometries composed of various materials. This study investigates the experimental implementation of the Direct Metal Laser Sintering (DMLS) technique for the 3D printing of SS316L. The primary objective of this research is to assess the optimal configuration of operational variables, namely laser power, scan speed, and layer thickness, in order to achieve a desired level of surface roughness. Utilizing laser power levels of 300, 330, and 360 W, scan rates of 800, 900, and 1000 mm/s, and layer thicknesses of 20, 40, and 80 μm, the L27 orthogonal array is utilized to produce SS316L test samples. The evaluation of surface roughness takes into account three primary parameters: Ra, Rz, and Rq. The results of the experiment illustrate the influence of various operational parameters on surface roughness. To determine the significance of individual parameters as well as their interactions, statistical analysis and correlation studies are utilized. As a decision-making instrument, the Analytical Hierarchy Process (AHP) is adapted to determine the optimal combination of operating parameters. In addition, the AHP facilitates the development of a hierarchical framework for evaluating the significance of individual parameters and their respective weights in achieving the most desirable combination. The outcomes demonstrate the impact of laser power, scan speed, and layer thickness on the surface roughness of SS316L printed specimens. In addition, the determination of the optimal combination of operating parameters improves surface quality. This study’s findings make a substantial contribution to the advancement of 3D printing technology and provide valuable insights for industries seeking to employ the DMLS technique with SS316L for manufacturing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babu, V.V.P., V.K., G.B.: A review on 3D printing process on metals and their surface roughness and dimensional accuracy. Mater. Today: Proc. 64, 523–530 (2022)

    Google Scholar 

  2. Markou, F., Segonds, F., Rio, M., et al.: A methodological proposal to link design with Additive Manufacturing to environmental considerations in the Early Design stages. Int. J. Interact. Des. Manuf. 11, 799–812 (2017). https://doi.org/10.1007/s12008-017-0412-1

    Article  Google Scholar 

  3. Singh, B.J., Sehgal, R., Singh, R.P.: Additive manufacturing in biomedical and healthcare sector: An umbrella review. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01524-0

    Article  Google Scholar 

  4. Daniyan, I.A., Balogun, V., Mpofu, K., et al.: An interactive approach towards the development of an additive manufacturing technology for railcar manufacturing. Int. J. Interact. Des. Manuf. 14, 651–666 (2020). https://doi.org/10.1007/s12008-020-00659-8

    Article  Google Scholar 

  5. Sun, Z., Vladimirov, G., Nikolaev, E., Velásquez-García, L.F.: Exploration of metal 3-D printing technologies for the microfabrication of freeform, finely featured, mesoscaled structures. J. Microelectromech. Syst. 27(6), 1171–1185 (2018)

    Article  Google Scholar 

  6. Wei, C., Li, L., Zhang, X., Chueh, Y.H.: 3D printing of multiple metallic materials via modified selective laser melting. CIRP Ann. 67(1), 245–248 (2018)

    Article  Google Scholar 

  7. Uçak, N., Çiçek, A., Aslantas, K.: Machinability of 3D printed metallic materials fabricated by selective laser melting and electron beam melting: A review. J. Manuf. Process. 80, 414–457 (2022)

    Article  Google Scholar 

  8. Chueh, Y.H., Wei, C., Zhang, X., Li, L.: Integrated laser-based powder bed fusion and fused filament fabrication for three-dimensional printing of hybrid metal/polymer objects. Additive Manuf. 31, 100928 (2020)

    Article  Google Scholar 

  9. Nazir, A., Jeng, J.Y.: A high-speed additive manufacturing approach for achieving high printing speed and accuracy. Proc. Institution Mech. Eng. Part. C: J. Mech. Eng. Sci. 234(14), 2741–2749 (2020)

    Article  Google Scholar 

  10. Tee, Y.L., Tran, P., Leary, M., Pille, P., Brandt, M.: 3D Printing of Polymer composites with material jetting: Mechanical and fractographic analysis. Additive Manuf. 36, 101558 (2020)

    Article  Google Scholar 

  11. Chin, S.Y., Dikshit, V., Meera Priyadarshini, B., Zhang, Y.: Powder-based 3D printing for the fabrication of device with micro and mesoscale features. Micromachines. 11(7), 658 (2020)

    Article  Google Scholar 

  12. Pant, P., Chatterjee, D., Samanta, S.K., Nandi, T., Lohar, A.K.: A bottom-up approach to experimentally investigate the deposition of austenitic stainless steel in laser direct metal deposition system. J. Brazilian Soc. Mech. Sci. Eng. 42, 1–10 (2020)

    Article  Google Scholar 

  13. Hassan, W., Farid, M.A., Tosi, A., Rane, K., Strano, M.: The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts. Int. J. Adv. Manuf. Technol. 114, 3057–3067 (2021)

    Article  Google Scholar 

  14. Mostafaei, A., Elliott, A.M., Barnes, J.E., Li, F., Tan, W., Cramer, C.L., Nandwana, P., Chmielus, M.: Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 119, 100707 (2021)

    Article  Google Scholar 

  15. Citarella, R., Giannella, V.: Additive manufacturing in industry. Applied Sciences, 11(2), p.840. (2021)

  16. Budzik, G., Woźniak, J., Paszkiewicz, A., Przeszłowski, Ł., Dziubek, T., Dębski, M.: Methodology for the quality control process of additive manufacturing products made of polymer materials. Materials, 14(9), p.2202. (2021)

  17. Zaifuddin, A.Q., Afiq, M.D., Aiman, M.H., Quazi, M.M., Ishak, M.: October. Effect of Laser Surface Modification on SS316L Surface Roughness and Laser Heating Temperature. In International Conference on Mechanical Engineering Research (pp. 959–969). Singapore: Springer Nature Singapore. (2021)

  18. Brancewicz-Steinmetz, E., Sawicki, J., Byczkowska, P.: The influence of 3D printing parameters on adhesion between polylactic acid (PLA) and thermoplastic polyurethane (TPU). Materials. 14(21), 6464 (2021)

    Article  Google Scholar 

  19. Boban, J., Ahmed, A.: Improving the surface integrity and mechanical properties of additive manufactured stainless steel components by wire electrical discharge polishing. J. Mater. Process. Technol. 291, 117013 (2021)

    Article  Google Scholar 

  20. Zhan, Z., Li, H.: Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. Int. J. Fatigue. 142, 105941 (2021)

    Article  Google Scholar 

  21. Koo, J., Park, E., Baek, A.M.C., Kim, N.: August. The Research of Surface Roughness Prediction with Machine Learning According to Process Parameters in Laser Powder Bed Fusion. In International Conference on Advanced Surface Enhancement (pp. 62–65). Singapore: Springer Singapore. (2021)

  22. Du, Y., Mukherjee, T., Finch, N., De, A., DebRoy, T.: High-throughput screening of surface roughness during additive manufacturing. J. Manuf. Process. 81, 65–77 (2022)

    Article  Google Scholar 

  23. Ghosh, A., Kumar, A., Wang, X., Kietzig, A.M., Brochu, M.: Analysis of the effect of surface morphology on tensile behavior of LPBF SS316L microstruts. Mater. Sci. Engineering: A. 831, 142226 (2022)

    Article  Google Scholar 

  24. Singh, R., Sidhu, J.S., Rishab, Pabla, B.S., Kumar, A.: Three-dimensional printing of innovative intramedullary pin profiles with direct metal laser sintering. J. Mater. Eng. Perform. 31(1), 240–253 (2022)

    Article  Google Scholar 

  25. Ramazani, H., Kami, A.: Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: A review. Progress Additive Manuf. 7(4), 609–626 (2022)

    Article  Google Scholar 

  26. Koker, B., Ruckdashel, R., Abajorga, H., Curcuru, N., Pugatch, M., Dunn, R., Kazmer, D.O., Wetzel, E.D., Park, J.H.: Enhanced interlayer strength and thermal stability via dual material filament for material extrusion additive manufacturing. Additive Manuf. 55, 102807 (2022)

    Article  Google Scholar 

  27. Sharma, S.K., Singh, A.K., Mishra, R.K., Shukla, A.K., Sharma, C.: Processing Techniques, Microstructural and Mechanical Properties of Additive Manufactured 316L Stainless Steel. Journal of The Institution of Engineers (India): Series D, pp.1–14. (2023)

  28. Theeda, S., Jagdale, S.H., Ravichander, B.B., Kumar, G.: Optimization of process parameters in laser powder Bed Fusion of SS 316L Parts using Artificial neural networks. Metals. 13(5), 842 (2023)

    Article  Google Scholar 

  29. Liu, Z., Yang, Y., Song, C., Zhou, H., Chen, Z., Liu, Z., Jiang, R., Zhou, Z., Wang, D.: The surface quality, microstructure and properties of SS316L using a variable area scan strategy during quad-laser large-scale powder bed fusion. Mater. Sci. Engineering: A. 871, 144450 (2023)

    Article  Google Scholar 

  30. Pradhan, S.R., Singh, R., Banwait, S.S.: 3D Printing assisted investment casting of Dental crowns for recycling of DMLS Waste. Arab. J. Sci. Eng. 48(3), 3289–3299 (2023)

    Article  Google Scholar 

  31. Ramkumar, P.L., Rijwani, T.: Additive manufacturing of metals and ceramics using hybrid fused filament fabrication. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(10), p.455. (2022)

  32. Dayal, R., Chaudhary, A., Verma, D., Verma, J.: A Comprehensive Review on Effect of DMLS process parameters and Post Processing on Quality of product in Biomedical Field. Int. J. Sci. Res. Mod. Sci. Technol. 2(5), 01–21 (2023)

    Google Scholar 

  33. Abhilash, P.M., Ahmed, A.: Convolutional neural network–based classification for improving the surface quality of metal additive manufactured components. Int. J. Adv. Manuf. Technol., pp.1–13. (2023)

  34. Farooq, M.U., Anwar, S., Ullah, R., Guerra, R.H.: Sustainable machining of additive manufactured SS-316L underpinning low carbon manufacturing goal. J. Mater. Res. Technol. 24, 2299–2318 (2023)

    Article  Google Scholar 

  35. Humnabad, P.S., Tarun, R., Das, I.: An Overview of Direct Metal Laser Sintering (DMLS) Technology for Metal 3D Printing, p. 70. Journal of Mines, Metals & Fuels (2022)

  36. Pradhan, S.R., Singh, R., Banwait, S.S.: On 3D printing of dental crowns with direct metal laser sintering for canine. J. Mech. Sci. Technol. 36(8), 4197–4203 (2022)

    Article  Google Scholar 

  37. Avanzini, A.: Fatigue behavior of additively manufactured stainless steel 316L. Materials. 16(1), 65 (2022)

    Article  Google Scholar 

  38. Dubey, Y., Sharma, P., Singh, M.P.: Optimization Using Genetic Algorithm of GMAW Parameters for Charpy Impact test of 080M40 Steel, pp. 1–11. International Journal on Interactive Design and Manufacturing (IJIDeM) (2023)

  39. Chen, Y., Zhang, X., Ding, D., Wang, X., Zhang, K., Liu, Y., Lu, T., Tu, S.: Integration of Interlayer Surface Enhancement Technologies into Metal Additive Manufacturing: A Review. Journal of Materials Science & Technology (2023)

  40. Alharbi, N.: Corrosion resistance of 3D printed SS316L post-processed by ultrasonic shot peening at optimum energy level. Proc. Institution Mech. Eng. Part. B: J. Eng. Manuf. 237(5), 745–757 (2023)

    Article  Google Scholar 

  41. Sampath, V.K., Silori, P., Paradkar, P., Niauzorau, S., Sharstniou, A., Hasib, A., Villalobos, S., Azeredo, B.: 3d printing of stainless steel 316L and its weldability for corrosive environments. Mater. Sci. Engineering: A. 833, 142439 (2022)

    Article  Google Scholar 

  42. Era, I.Z., Grandhi, M., Liu, Z.: Prediction of mechanical behaviors of L-DED fabricated SS 316L parts via machine learning. Int. J. Adv. Manuf. Technol. 121(3–4), 2445–2459 (2022)

    Article  Google Scholar 

  43. Raja, S., Rajan, J., Praveen Kumar, A., Rajeswari, V., Girija, N., Modak, M., Kumar, S.V., R. and, Mammo, W.D.: Selection of additive manufacturing machine using analytical hierarchy process. Scientific Programming, 2022. (2022)

  44. ÇETİNKAYA, C., KABAK, M. and, ÖZCEYLAN, E.: 3D printer selection by using fuzzy analytic hierarchy process and PROMETHEE. Bilişim Teknolojileri Dergisi. 10(4), 371–380 (2017)

    Google Scholar 

  45. Ransikarbum, K., Leksomboon, R.: April. Analytic hierarchy process approach for healthcare educational media selection: Additive manufacturing inspired study. In 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 154–158). IEEE. (2021)

  46. Ransikarbum, K., Pitakaso, R., Kim, N.: A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Appl. Sci. 10(15), 5159 (2020)

    Article  Google Scholar 

  47. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)

    Google Scholar 

  48. Jayawardena, S., Gopura, R.A.R.C.: Analytical hierarchical process in decision making. In: Social Research Methodology and Publishing Results: A Guide to Non-Native English Speakers, pp. 164–179. IGI Global (2023)

  49. Geetha, N., Pappula, B.: Integrated AHP and WED based Approach to select optimal combination of operating parameters on Spark Ignition Engine, SAE Technical Paper 2019-01-0025, 2019.

  50. Saranya, T., Saravanan, S.: Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India. Int. J. Environ. Sci. Technol. 20(2), 1837–1856 (2023)

    Article  Google Scholar 

  51. Mu, E., Pereyra-Rojas, M.: Practical Decision Making Using Super Decisions v3: An Introduction to the Analytic Hierarchy Process. Springer (2017)

  52. Saaty, T.L.: Deriving the AHP 1–9 scale from first principles. Proceedings 6th ISAHP. Berna, Suiza, pp.397–402. (2001)

  53. Geetha, N.K., Bridjesh, P.: AHP approach to select optimum operating parameters on engine. Int. J. Pure App Math. 119(12), 2291–2301 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vemuri Venkata Phani Babu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phani Babu, V.V., GB, V.K. & Barmavatu, P. An experimental investigation on surface quality of 3D metal printed SS316L by direct metal laser sintering technique. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01801-6

Keywords

Navigation