Skip to main content
Log in

Investigation on Taubin smoothing performance of additively manufactured structures: case study of the MBB beam using laser powder bed fusion

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Manufacturability of topology optimized models is a key element when it comes to the coupling of topology optimization (TO) and additive manufacturing. However, most topology optimization techniques generate models incorporating geometric inconsistencies that require additional post-processing. In this article, Taubin smoothing method is applied to an optimized Messerschmitt–Bölkow–Blohm beam using Solid Isotropic Microstructure with Penalization method of stainless steel 316L and produced using the selective laser melting (SLM) process. Furthermore, a performance-based analysis is realized to measure the mesh quality, using a set of quality metrics of the smooth mesh. Taubin method demonstrated a high capacity in preserving the overall volume while smoothing voxel elements engendering greater formability of the structure. The implemented conditioning of Taubin smoothing alongside SLM’s printing parameters produced high-quality surfaces with reasonable roughness. Numerical and experimental three-point bending tests are set to investigate both the stiffness performance and surface quality of the designed parts. The obtained results showed that the smooth manufactured parts are less stiff than the original TO model. Potential contributors are discussed, including the formation of an anisotropic microstructure of stainless steel 316L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The experimental datasets generated and analyzed during the current study are available in the Mississippi State University institutional repository, https://scholarsjunction.msstate.edu/td/2311.

Abbreviations

TO:

Topology optimization

AM:

Additive manufacturing

SIMP:

Solid isotropic with material penalization

SS 316L:

Stainless steel 316L

STL:

Standard Tessellation Language

MBB:

Messerschmidt–Bölkow–Blohm

CAD:

Computer-aided design

FEA:

Finite element analysis

DfAM:

Design for additive manufacturing

References

  1. Reddy, S.N. et al.: Topology optimization software for additive manufacturing: a review of current capabilities and a real-world example. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016. American Society of Mechanical Engineers (ASME) (2016)

  2. Zhang, L.-C., et al.: Additive manufacturing of titanium alloys by electron beam melting: a review. Adv. Eng. Mater. 20(5), 1700842 (2018)

    Article  Google Scholar 

  3. Salmi, A., Calignano, F., Galati, M., Atzeni, E.: An integrated design methodology for components produced by laser powder bed fusion (L-PBF) process. Virtual Phys. Prototyp. 13(3), 191–202 (2018). https://doi.org/10.1080/17452759.2018.1442229

    Article  Google Scholar 

  4. Boos, E., Ihlenfeldt, S., Milaev, N., et al.: Topology optimized unit cells for laser powder bed fusion. Berg Huettenmaenn Monat 167, 291–299 (2022). https://doi.org/10.1007/s00501-022-01234-2

    Article  Google Scholar 

  5. Priarone, P.C., Lunetto, V., Atzeni, E., Salmi, A.: Laser powder bed fusion (L-PBF) additive manufacturing: on the correlation between design choices and process sustainability. Procedia Cirp 78, 85–90 (2018)

    Article  Google Scholar 

  6. Zhang, Z.D., Ibhadode, O., Ali, U., et al.: Topology optimization parallel-computing framework based on the inherent strain method for support structure design in laser powder-bed fusion additive manufacturing. Int. J. Mech. Mater. Des. 16, 897–923 (2020). https://doi.org/10.1007/s10999-020-09494-x

    Article  Google Scholar 

  7. Li, Z., Lee, T.-U., Yao, Y., Xie, Y.: Smoothing topology optimization results using pre-built lookup tables. Adv. Eng. Softw. 173, 103204 (2022). https://doi.org/10.1016/j.advengsoft.2022.103204

    Article  Google Scholar 

  8. Gibson, I., et al.: Additive Manufacturing Technologies, vol. 17. Springer, Cham (2021)

    Book  Google Scholar 

  9. Bacciaglia, A., Ceruti, A., Liverani, A.: Surface smoothing for topological optimized 3D models. Struct. Multidiscip. Optim. 64, 3453–3472 (2021). https://doi.org/10.1007/s00158-021-03027-6

    Article  MathSciNet  Google Scholar 

  10. Savio, G. et al.: 3D model representation and data exchange for additive manufacturing. In: Advances on Mechanics, Design Engineering and Manufacturing II: Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2018). Springer International Publishing (2019)

  11. Patterson, A.E., Messimer, S.L., Farrington, P.A.: Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies 5, 15 (2017)

    Article  Google Scholar 

  12. Allen S., Dutta D.: On the computation of part orientation using support structures in layered manufacturing. In: Proceedings of Solid Freeform Fabrication Symposium, pp. 259–69. University of Texas at Austin, Austin (1994)

  13. Olakanmi, E.O., Cochrane, R., Dalgarno, K.: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)

    Article  Google Scholar 

  14. Papadakis, L., Loizou, A., Risse, J., Schrage, J.: Numerical computation of component shape distortion manufactured by selective laser melting. Procedia CIRP 18, 90–95 (2014)

    Article  Google Scholar 

  15. Mercelis, P., Kruth, J.-P.: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12, 254–265 (2006)

    Article  Google Scholar 

  16. Bompos, D., Chaves-Jacob, J., Sprauel, J.-M.: Shape distortion prediction in complex 3D parts induced during the selective laser melting process. CIRP Ann. 69(1), 517–520 (2020). https://doi.org/10.1016/j.cirp.2020.04.014

    Article  Google Scholar 

  17. Ohtake, Y., Belyaev, A.G., Bogaevski, I.A.: Polyhedral surface smoothing with simultaneous mesh regularization. In: Proceedings Geometric Modeling and Processing 2000. Theory and Applications, Hong Kong, China, pp. 229–237 (2000). https://doi.org/10.1109/GMAP.2000.838255

  18. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normal. In: IEEE Visualization, 2002. VIS 2002. Boston, 2002, pp. 125–132 (2002). https://doi.org/10.1109/VISUAL.2002.1183766

  19. Wang, J., Huang, J., Wang, F.L., Wei, M., Xie, H., Qin, J.: Data-driven geometry-recovering mesh denoising. Comput. Aided Design (2019). https://doi.org/10.1016/j.cad.2019.05.027

    Article  Google Scholar 

  20. Lu, X., Liu, X., Deng, Z., Chen, W.: An efficient approach for feature-preserving mesh denoising. Opt. Lasers Eng. 90, 186–195 (2017). https://doi.org/10.1016/j.optlaseng.2016.09.003

    Article  Google Scholar 

  21. Tannenbaum, A.R., et al.: Invariant geometric evolutions of surfaces and volumetric smoothing. SIAM J. Appl. Math. 57, 176–194 (1997)

    Article  MathSciNet  Google Scholar 

  22. Kelly, A., Kaczmarski, L., Pearce, C.: Mesh improvement methodology for 3D volumes with non-planar surfaces. In: Jiao, X., Weill, J.C. (eds.) Proceedings of the 21st International Meshing Roundtable. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33573-0_4

    Chapter  Google Scholar 

  23. Vollmer, J., Mencl, R., Müller, H.: Improved Laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18, 131–138 (1999). https://doi.org/10.1111/1467-8659.00334

    Article  Google Scholar 

  24. Bærentzen, J., Gravesen, J., Anton, F., Aanæs, H.: Guide to Computational Geometry Processing: Foundations, Algorithms, and Methods. Springer, New York (2012)

    Book  Google Scholar 

  25. Zegard, T., Paulino, G.H.: Bridging topology optimization and additive manufacturing. Struct. Multidiscip. Optim. 53(1), 175–192 (2016)

    Article  Google Scholar 

  26. Pommatau, G., Montredon, F., Carlino, A., Salvi, M., Kot, E., Clement, F., Abed, S.: Engineering design cycle for an additive layer manufactured secondary structure, from concept to final validation. In: 14th European Conference on Spacecraft Structures, Materials And Environmental Testing, Toulouse, France, Sept. 27–30 (2016)

  27. Maute, K., Tkachuk, A., Wu, J., Jerry Qi, H., Ding, Z., Dunn, M.L.: Level set topology optimization of printed active composites. J. Mech. Des. ASME 137(11), 111402–111415 (2015)

    Article  Google Scholar 

  28. Mönch, T., Lawonn, K., Kubisch, C., Westermann, R., Preim, B.: Interactive mesh smoothing for medical applications. Comput. Graphics Forum 32, 110–121 (2013). https://doi.org/10.1111/cgf.12165

    Article  Google Scholar 

  29. Cuillière, J.-C., François, V., Nana, A.: Automatic construction of structural CAD models from 3D topology optimization. Comput. Aided Design Appl. 15(1), 107–121 (2018). https://doi.org/10.1080/16864360.2017.1353726

    Article  Google Scholar 

  30. Donegan, S.P., Schwalbach, E.J., Groeber, M.A.: Multimodal registration and fusion of in situ and ex situ metal additive manufacturing data. JOM 73, 3250–3262 (2021). https://doi.org/10.1007/s11837-021-04883-9

    Article  Google Scholar 

  31. Li, R., Jin, M., Pei, Z., et al.: Geometrical defect detection on additive manufacturing parts with curvature feature and machine learning. Int. J. Adv. Manuf. Technol. 120, 3719–3729 (2022). https://doi.org/10.1007/s00170-022-08973-z

    Article  Google Scholar 

  32. Lerebours, A., Marin, F., Bouvier, S., Egles, C., Masquelet, A.-C., Rassineux, A.: A voxel-based method for designing a numerical biomechanical model patient-specific with an anatomical functional approach adapted to additive manufacturing. Comput. Methods Biomech. Biomed. Eng. (2019). https://doi.org/10.1080/10255842.2018.1552684

    Article  Google Scholar 

  33. Wulle, F., Gorke, O., Schmidt, S., Nistler, M., Tovar, G.E.M., Riedel, O., Verl, A., Weber, A., Southan, A.: Multi-axis 3D printing of gelatin methacryloyl hydrogels on a non-planar surface obtained from magnetic resonance imaging. Addit. Manuf. 50, 102566 (2022). https://doi.org/10.1016/j.addma.2021.102566

    Article  Google Scholar 

  34. Amroune, A., Cuillière, J.-C., François, V.: Automated lofting-based reconstruction of CAD models from 3D topology optimization results. Comput. Aided Design 145, 103183 (2022). https://doi.org/10.1016/j.cad.2021.103183

    Article  MathSciNet  Google Scholar 

  35. Jadayel, M., Khameneifar, F.: Improving geometric accuracy of 3D printed parts using 3D metrology feedback and mesh morphing. J. Manuf. Mater. Process. 4, 112 (2020). https://doi.org/10.3390/jmmp4040112

    Article  Google Scholar 

  36. Van de Ven, E., Maas, R., Ayas, C., et al.: Overhang control in topology optimization: a comparison of continuous front propagation-based and discrete layer-by-layer overhang control. Struct. Multidiscip. Optim. 64, 761–778 (2021). https://doi.org/10.1007/s00158-021-02887-2

    Article  MathSciNet  Google Scholar 

  37. Biedermann, M., Beutler, P., Meboldt, M.: Automated design of additive manufactured flow components with consideration of overhang constraint. Addit. Manuf. 46, 102119 (2021). https://doi.org/10.1016/j.addma.2021.102119

    Article  Google Scholar 

  38. Langelaar, M.: Combined optimization of part topology, support structure layout and build orientation for additive manufacturing. Struct. Multidiscip. Optim. 57, 1985–2004 (2018). https://doi.org/10.1007/s00158-017-1877-z

    Article  MathSciNet  Google Scholar 

  39. Moreno Nieto, D., Moreno, D.: Design for additive manufacturing: tool review and a case study. Appl. Sci. 11, 1571 (2021). https://doi.org/10.3390/app11041571

    Article  Google Scholar 

  40. Liu, K., Tovar, A.: An efficient 3D topology optimization code written in MATLAB. Struct. Multidiscip. Optim. 50, 1175–1196 (2014). https://doi.org/10.1007/s00158-014-1107-x

    Article  MathSciNet  Google Scholar 

  41. Taubin, G.: Curve and surface smoothing without shrinkage. In: Proceedings of IEEE International Conference on Computer Vision, Cambridge, MA, USA, pp. 852–857 (1995). https://doi.org/10.1109/ICCV.1995.466848

  42. Agathos, A., Azariadis, P., Kyratzi, S.: Elliptic Gabriel Taubin smoothing of point clouds. Comput. Graph. 106, 20–32 (2022). https://doi.org/10.1016/j.cag.2022.05.009

    Article  Google Scholar 

  43. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., New York, NY, pp. 317–324 (1999). https://doi.org/10.1145/311535.311576

  44. Prasad, T.: A comparative study of mesh smoothing methods with flipping in 2D and 3D. Retrieved from https://doi.org/10.7282/T3MG7T20

  45. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: measuring errors between surfaces using the Hausdorff distance. In: Proceedings. IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, vol. 1, pp. 705–708 (2002). https://doi.org/10.1109/ICME.2002.1035879

  46. Ugale, V., Singh, K., Mishra, N., Kumar, P.: Experimental studies on thin sandwich panels under impact and static loading. J. Reinf. Plast. Compos. 32(6), 420–434 (2013). https://doi.org/10.1177/0731684412469849

    Article  Google Scholar 

  47. Meng, L., Lan, X., Zhao, J., Wang, Z.: Equivalent models and mechanical properties of bio-inspired corrugated sandwich structures subjected to bending loads. Compos. Struct. 244, 112257 (2020). https://doi.org/10.1016/j.compstruct.2020.112257

    Article  Google Scholar 

  48. Afify, M.: Flexural bending test of topology optimization additively manufactured parts (2019). Theses and Dissertations. 2311. https://scholarsjunction.msstate.edu/td/2311

  49. Ilie, A., Ali, H., Mumtaz, K.: In-built customised mechanical failure of 316L components fabricated using selective laser melting. Technologies 5, 9 (2017). https://doi.org/10.3390/technologies5010009

    Article  Google Scholar 

  50. Zhang, J., Chi, M., Qian, B., Qiu, Z.: Periodic lattice porous structure produced by selective laser melting: process, experiment and numerical simulation analysis. Comput. Model. Eng. Sci. 125, 77–94 (2020). https://doi.org/10.32604/cmes.2020.010518

    Article  Google Scholar 

  51. Data sheet: SS 316L-0407 powder for additive manufacturing, https://resources.renishaw.com/en/details/data-sheet-ss-316l-0407-powder-for-additivemanufacturing--90802

  52. Zhong, T., He, K., Li, H., Yang, L.: Mechanical properties of lightweight 316L stainless steel lattice structures fabricated by selective laser melting. Mater. Design 181, 108076 (2019). https://doi.org/10.1016/j.matdes.2019.108076

    Article  Google Scholar 

  53. Carraturo, M., Alaimo, G., Marconi, S., et al.: Experimental and numerical evaluation of mechanical properties of 3D-printed stainless steel 316L lattice structures. J. Mater. Eng. Perform. 30, 5247–5251 (2021). https://doi.org/10.1007/s11665-021-05737-w

    Article  Google Scholar 

  54. Liu, L., Kamm, P., García-Moreno, F., Banhart, J., Pasini, D.: Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184 (2017). https://doi.org/10.1016/j.jmps.2017.07.003

    Article  MathSciNet  Google Scholar 

  55. Yeung, H., Lane, B., Fox, J.: Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.100844. (PMID: 34141600; PMCID: PMC8207528)

    Article  Google Scholar 

Download references

Acknowledgements

The experimental part of this work was conducted at the Center of Advanced Vehicular Systems of Mississippi State University. Furthermore, the expansion of this work was carried out in the frame of the cooperation between the Royal Center for Space Research and Studies (CRERS) and the Mohammed V University in Rabat (UM5R).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

MA designed, conducted this research and drafted the manuscript. BL coordinated the 3D printing of the three-specimens. Both DMB and MA carried out the experiments and data analysis. Moreover, all the authors guided the study and participated in research coordination. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammed Afify.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14207 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afify, M., Belk, D.M., Linkan, B. et al. Investigation on Taubin smoothing performance of additively manufactured structures: case study of the MBB beam using laser powder bed fusion. Int J Interact Des Manuf 18, 11–31 (2024). https://doi.org/10.1007/s12008-023-01406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01406-5

Keywords

Navigation