Skip to main content
Log in

Analytical and numerical analysis of an internally and/or externally pressurized thick-walled sphere made of radially nonuniform material

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this work, a thick-walled spherical vessel made of nonhomogeneous materials subjected to internal and/or external pressure was analyzed within the context of three-dimensional elasticity theory. A closed-form analytical solution was obtained for computing the displacement and stress fields. It has been assumed that the elastic stiffness is varying through thickness of the functionally graded material according to a nonlinear general expression, while Poisson’s ratio is considered as constant. In order to check the relevance of the analytical solution, a finite element model of the pressurized vessel were constructed, taking into account variations in Young's modulus. Very good agreement has been found between the numerical results and the predictions of the analytical solution, which confirms the accuracy of our model. Thus, the inhomogeneity in material properties can be exploited to optimize the distribution of displacement and stress fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

E in :

Young modulus at inner radius

m, s :

FGM grading parameters

M :

Kummer’s function

r :

Radius

P in :

Internal pressure

P out :

External pressure

R in :

Inner radius

R out :

Outer radius

\({\varvec{u}}\) :

Displacement vector

\(u_{r} ,\;u_{\theta } ,\;u_{\phi }\) :

Components of the displacement vector

\(\nu\) :

Poisson’s ratio

\(\gamma\) :

Grading parameter

\({\varvec{\sigma}}\) :

Cauchy stress tensor

\(\sigma_{rr} ,\;\sigma_{\theta \theta } ,\;\sigma_{\phi \phi }\) :

Components of the Cauchy stress tensor

\({\varvec{\varepsilon}}\) :

Stress tensor

\(\varepsilon_{rr} ,\;\varepsilon_{\theta \theta } ,\;\varepsilon_{\phi \phi }\) :

Components of the strain tensor

\(\mu ,\;\lambda\) :

Lamé’s coefficients

\(\delta_{ij}\) :

Symbol of Kronecker

in, out :

Inner (internal), Outer (outside)

r, θ, ϕ :

Radial, circumferential and meridional direction

References

  1. Celebi, K., Yarımpabuc, D., Keles, I.: A novel approach to thermal and mechanical stresses in a FGM cylinder with exponentially-varying properties. J. Theor. Appl. Mech. 55, 343 (2017)

    Article  Google Scholar 

  2. Bayat, Y., EkhteraeiToussi, H.: General thermo-elastic solution of radially heterogeneous, spherically isotropic rotating sphere. J. Mech. Sci. Technol. 29(6), 2427–2438 (2015)

    Article  Google Scholar 

  3. Armenàkas, A.E.: Advanced Mechanics of Materials and Applied Elasticity. ISBN 9780849398995 (2016)

  4. Dehnavi, F.N., Parvizi, A.: Investigation of thermo-elasto-plastic behavior of thick-walled spherical vessels with inner functionally graded coatings. Meccanica 52(10), 2421–2438 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jabbari, M., Sohrabpour, S., Eslami, M.: Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Press. Vessels Pip. 79(7), 493–497 (2002)

    Article  MATH  Google Scholar 

  6. Dryden, J., Jayaraman, K.: Effect of inhomogeneity on the stress in pipes. J. Elast. 83(2), 179–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, Z., Zhang, Q., Xia, L., Wu, J., Liu, P.: Stress analysis and parameter optimization of an FGM pressure vessel subjected to thermo-mechanical loadings. Procedia Eng. 130, 374–389 (2015)

    Article  Google Scholar 

  8. Ghannad, M., Rahimi, G.H., Nejad, M.Z.: Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials. Compos. B Eng. 45(1), 388–396 (2013)

    Article  Google Scholar 

  9. Kokini, K., DeJonge, J., Rangaraj, S., Beardsley, B.: Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surf. Coat. Technol. 154(2–3), 223–231 (2002)

    Article  Google Scholar 

  10. Sharma, D., Sharma, J., Dhaliwal, S., Walia, V.: Vibration analysis of axisymmetric functionally graded viscothermoelastic spheres. Acta. Mech. Sin. 30(1), 100–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, Y.-W.: Effect of partial elastic foundation on free vibration of fluid-filled functionally graded cylindrical shells. Acta. Mech. Sin. 31(6), 920–930 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pandey, P.M., Rathee, S., Srivastava, M., Jain, P.K.: Functionally Graded Materials (FGMs): Fabrication, Properties, Applications, and Advancements, 1st edn. CRC Press, London (2021)

    Book  Google Scholar 

  13. Mahamood, R.M., Akinlabi, E.T.: Types of functionally graded materials and their areas of application. In: Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham (2017)

  14. Jabbari, M., Mohazzab, A.H., Bahtui, A.: One-dimensional moving heat source in a hollow FGM cylinder. J. Press. Vessel Technol. 131(2), 021202 (2009)

    Article  Google Scholar 

  15. Naj, R., Boroujerdy, M.S., Eslami, M.: Thermal and mechanical instability of functionally graded truncated conical shells. Thin Wall. Struct. 46(1), 65–78 (2008)

    Article  Google Scholar 

  16. Bayat, M., Sahari, B., Saleem, M., Ali, A., Wong, S.: Thermoelastic solution of a functionally graded variable thickness rotating disk with bending based on the first-order shear deformation theory. Thin Wall. Struct. 47(5), 568–582 (2009)

    Article  MATH  Google Scholar 

  17. Sadeghian, M., Ekhteraei Toussi, H.: Axisymmetric elastoplasticity of a temperature-sensitive functionally graded cylindrical vessel. J. Press. Vessel Technol. 136(6), 061203 (2014)

    Article  Google Scholar 

  18. Eslami, M., Babaei, M., Poultangari, R.: Thermal and mechanical stresses in a functionally graded thick sphere. Int. J. Press. Vessels Pip. 82(7), 522–527 (2005)

    Article  Google Scholar 

  19. Lutz, M.P., Zimmerman, R.W.: Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere. J. Therm. Stresses 19(1), 39–54 (1996)

    Article  MathSciNet  Google Scholar 

  20. Zimmerman, R.W., Lutz, M.P.: Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder. J. Therm. Stress. 22(2), 177–188 (1999)

    Article  Google Scholar 

  21. Fukui, Y., Yamanaka, N.: Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure. JSME Int. J. Ser. 1 Solid Mech. Strength Mater. 35(4), 379–385 (1992)

    Google Scholar 

  22. Fukui, Y., Yamanaka, N., Wakashima, K.: The stresses and strains in a thick-walled tube for functionally graded material under uniform thermal loading. Int. J. Ser. A Mech. Mater. Eng. 36(2), 156–162 (1993)

    Google Scholar 

  23. Obata, Y., Noda, N.: Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material. J. Therm. Stresses 17(3), 471–487 (1994)

    Article  Google Scholar 

  24. Tutuncu, N., Ozturk, M.: Exact solutions for stresses in functionally graded pressure vessels. Compos. B Eng. 32(8), 683–686 (2001)

    Article  Google Scholar 

  25. Bayat, Y., Ghannad, M., Torabi, H.: Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading. Arch. Appl. Mech. 82(2), 229–242 (2012)

    Article  MATH  Google Scholar 

  26. Wang, Z., Zhang, Q., Xia, L., Wu, J., Liu, P.: Thermomechanical analysis of pressure vessels with functionally graded material coating. J. Press. Vessel Technol. 138(1), 011205 (2016)

    Article  Google Scholar 

  27. Atashipour, S.A., Sburlati, R., Atashipour, S.R.: Elastic analysis of thick-walled pressurized spherical vessels coated with functionally graded materials. Meccanica 49(12), 2965–2978 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mohammadi, M., Dryden, J.R.: Influence of the spatial variation of Poisson’s ratio upon the elastic field in nonhomogeneous axisymmetric bodies. Int. J. Solids Struct. 46, 788–795 (2009)

    Article  MATH  Google Scholar 

  29. Benslimane, A., Bouzidi, S., Methia, M.: Displacements and stresses in pressurized thick-walled FGM cylinders: Exact and numerical solutions. Int. J. Press. Vessels Pip. 168, 219–224 (2018)

    Article  Google Scholar 

  30. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. US Government printing office (1948)

  31. Bell, W.W.: Special Functions for Scientists and Engineers. Courier Corporation (2004)

Download references

Acknowledgements

We thank the editor and anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions, which helped us to improve the manuscript. The authors thank the General Directorate of Scientific Research and Technological Development (DGRSDT/MESRS-Algeria) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhakim Benslimane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The development of Eq. (17) can be written in the form:

$$ M\left( {a_{i} ,b_{i} ,\gamma \left( {\frac{r}{{R_{in} }}} \right)^{s} } \right) = 1 + \frac{{\alpha_{i} \left( {\gamma \left( {\frac{r}{{R_{in} }}} \right)^{s} } \right)}}{{\beta_{i} }} + \frac{{\alpha_{i} \left( {1 + \alpha_{i} } \right)\left( {\gamma \left( {\frac{r}{{R_{in} }}} \right)^{s} } \right)}}{{\beta_{i} \left( {1 + \beta_{i} } \right)2!}} + .... + \frac{{\left( {\alpha_{i} } \right)_{n} \left( {\gamma \left( {\frac{r}{{R_{in} }}} \right)^{s} } \right)^{n} }}{{\left( {\beta_{i} } \right)_{n} n!}} + ... $$
(1.1)

The derivative form of Kummer’s function (Eq. 17) is given by:

$$ \frac{{dM\left( {\alpha ,\beta ,\gamma \left( {\frac{r}{{R_{in} }}} \right)^{s} } \right)}}{dr} = \frac{\alpha }{\beta }\frac{{\gamma \left( {\frac{r}{{R_{in} }}} \right)^{s} }}{r}M\left( {\alpha + 1,\beta + 1,\gamma \left( {\frac{r}{{R_{in} }}} \right)^{s} } \right) $$
(1.2)

The derivative of the displacement function Eq. (16) is calculated as follows:

$$ \frac{{du_{r} }}{dr} = \frac{1}{r}\sum\limits_{k = 1}^{2} {A_{k,NH} \,r^{{\lambda_{k} }} \,e^{{ - \gamma \left( {\frac{r}{{R_{in} }}} \right)^{s} }} } \left[ {f_{k} \left( r \right)\,g_{k} \left( r \right) + h_{k} \left( r \right)} \right] $$
(1.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benslimane, A., Methia, M., Hammoum, R. et al. Analytical and numerical analysis of an internally and/or externally pressurized thick-walled sphere made of radially nonuniform material. Int J Interact Des Manuf 17, 637–648 (2023). https://doi.org/10.1007/s12008-022-00976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00976-0

Keyword

Navigation