Skip to main content
Log in

Sucrose-derived carbon membranes for sustainable water desalination

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Synthesis and preparation of carbon membranes have been carried out and applied for desalination. Carbon is obtained from sucrose by pyrolyzing at various temperatures. Carbon membranes are made by coating alumina tubes with sucrose solution using dip-coating. The effect of carbonization temperature on the character of the membrane material and the desalination performance was investigated. This study’s results indicate that the carbonization temperature modifies the characteristics of membrane material. TGA data show that solid sucrose is thermally stable up to 210°C. This result aligns with the FTIR results, which show that functional group changes occur when the carbonization temperature exceeds 200°C. The GSA data shows that the resulting adsorption isotherm is type V, indicating mesoporous material. However, the volume and pore size of the carbon membrane material is minimal. SEM results show that carbon is dense but not equitably distributed. The salt rejection reached 100%, and the water flux was greater than 10 kg.m−2.h−1 at a feed concentration of 1% and a temperature of 60°C. Salt rejection is consistent at around 100% for up to 60 h for long-term testing. The absence of significant alterations indicates the high stability of the carbon membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data has been presented in this manuscript, and no additional data needs to be attached in the supplementary. Data will be available upon request.

References

  1. Wang, Y, Li, Q, Tang, G, Zhang, N, “Recent Progress on Carbon Based Desalination Membranes and Carbon Nanomaterial Incorporated Non-Polyamide Desalination Membranes.” J. Environ. Chem. Eng., 9 (4) 105762 (2021)

    Article  CAS  Google Scholar 

  2. Elsaid, K, Sayed, ET, Abdelkareem, MA, Baroutaji, A, Olabi, AG, “Environmental Impact of Desalination Processes: Mitigation and Control Strategies.” Sci. Total Environ., 740 140125 (2020)

    Article  CAS  Google Scholar 

  3. Al-Amshawee, S, Yunus, MYBM, Azoddein, AAM, Hassell, DG, Dakhil, IH, Hasan, HA, “Electrodialysis Desalination for Water and Wastewater: A Review.” Chem. Eng. J., 380 122231 (2020)

    Article  CAS  Google Scholar 

  4. Thomas, ER, Jain, A, Mann, SC, Yang, Y, Green, MD, Walker, WS, Perreault, F, Lind, ML, Verduzco, R, “Freestanding Self-Assembled Sulfonated Pentablock Terpolymer Membranes for High Flux Pervaporation Desalination.” J. Membr. Sci., 613 118460 (2020)

    Article  CAS  Google Scholar 

  5. Meng, J, Zhao, P, Cao, B, Lau, CH, Xue, Y, Zhang, R, Li, P, “Fabricating Thin-Film Composite Membranes for Pervaporation Desalination via Photo-Crosslinking.” Desalination, 512 115128 (2021)

    Article  CAS  Google Scholar 

  6. Elma, M, Bilad, MR, Pratiwi, AE, Rahma, A, Asyyaifi, ZL, Hairullah, H, Syauqiah, I, Arifin, YF, Lestari, RA, “Long-Term Performance and Stability of Interlayer-Free Mesoporous Silica Membranes for Wetland Saline Water Pervaporation.” Polymers, 14 (5) 895 (2022)

    Article  CAS  Google Scholar 

  7. da Silva, DARO, Zuge, LCB, de Paula Scheer, A, “Pretreatments for Seawater Desalination by Pervaporation Using the Developed Green Silica/PVA Membrane.” J. Environ. Chem. Eng., 9 (6) 106327 (2021)

    Article  Google Scholar 

  8. Darmawan, A, Karlina, L, Astuti, Y, Motuzas, J, Wang, DK, da Costa, JC, “Structural Evolution of Nickel Oxide Silica Sol-Gel for the Preparation of Interlayer-Free Membranes.” J. Non-Cryst. Solids., 447 9–15 (2016)

    Article  CAS  Google Scholar 

  9. Elma, M, Rampun, ELA, Rahma, A, Assyaifi, ZL, Sumardi, A, Lestari, AE, Saputro, GS, Bilad, MR, Darmawan, A, “Carbon Templated Strategies of Mesoporous Silica Applied for Water Desalination: A Review.” J. Water Process Eng., 38 101520 (2020)

    Article  Google Scholar 

  10. Darmawan, A, Karlina, L, Astuti, Y, Sriatun, Wang, DK, Motuzas, J, da Costa, JCD, “Interlayer Free—Nickel Doped Silica Membranes for Desalination.” IOP Conf. Ser. Mater. Sci. Eng., 172 (1) 012001 (2017)

  11. Darmawan, A, Munzakka, L, Karlina, L, Saputra, RE, Sriatun, S, Astuti, Y, Wahyuni, AS, “Pervaporation Membrane for Desalination Derived from Tetraethylorthosilicate-Methyltriethoxysilane.” J. Sol-Gel Sci. Technol., 101 (3) 505–518 (2022)

    Article  CAS  Google Scholar 

  12. Lei, L, Bai, L, Lindbråthen, A, Pan, F, Zhang, X, He, X, “Carbon Membranes for CO2 Removal: Status and Perspectives from Materials to Processes.” Chem. Eng. J., 401 126084 (2020)

    Article  CAS  Google Scholar 

  13. Athayde, DD, Motuzas, J, Diniz da Costa, JC, Vasconcelos, WL, “Novel Two-Step Phase Inversion and Dry Surface Coated Carbon Membranes on Alumina Freeze-cast Substrates for Desalination.” Desalination, 500 114862 (2021)

    Article  CAS  Google Scholar 

  14. Manawi, Y, Kochkodan, V, Hussein, MA, Khaleel, MA, Khraisheh, M, Hilal, N, “Can Carbon-Based Nanomaterials Revolutionize Membrane Fabrication for Water Treatment and Desalination?” Desalination, 391 69–88 (2016)

    Article  CAS  Google Scholar 

  15. Rodrigues, SC, Andrade, M, Moffat, J, Magalhães, FD, Mendes, A, “Preparation of Carbon Molecular Sieve Membranes from an Optimized Ionic Liquid-Regenerated Cellulose Precursor.” J. Membr. Sci., 572 390–400 (2019)

    Article  CAS  Google Scholar 

  16. Lee, H-J, Yoshimune, M, Suda, H, Haraya, K, “Effects of Oxidation Curing on the Permeation Performances of Polyphenylene Oxide-Derived Carbon Membranes.” Desalination, 193 (1) 51–57 (2006)

    Article  CAS  Google Scholar 

  17. Tseng, C, Liu, Y-L, “Poly(Vinyl Alcohol)/Carbon Nanotube (CNT) Membranes for Pervaporation Dehydration: The Effect of Functionalization Agents for CNT on Pervaporation Performance.” J. Membr. Sci., 668 121185 (2023)

    Article  CAS  Google Scholar 

  18. Liu, Y, Tong, Z, Zhu, H, Zhao, X, Du, J, Zhang, B, “Polyamide Composite Membranes Sandwiched with Modified Carbon Nanotubes for High Throughput Pervaporation Desalination of Hypersaline Solutions.” J. Membr. Sci., 641 119889 (2022)

    Article  CAS  Google Scholar 

  19. Alvarenga, AD, Andre, RD, Teodoro, KB, Schneider, R, Mercante, LA, Correa, DS, “Nanofibrous Filtering Membranes Modified with Sucrose-Derived Carbonaceous Materials for Adsorption in Batch and Fixed Bed.” Chem. Eng. J., 451 138557 (2023)

    Article  CAS  Google Scholar 

  20. Alomair, A, Alqaheem, Y, Holmes, SM, “The Use of a Sucrose Precursor to Prepare a Carbon Membrane for the Separation of Hydrogen from Methane.” RSC Adv., 9 (19) 10437–10444 (2019)

    Article  CAS  Google Scholar 

  21. Motuzas, J, Yacou, C, Madsen, RSK, Fu, W, Wang, DK, Julbe, A, Vaughan, J, Diniz, JC, “Novel Inorganic Membrane for the Percrystallization of Mineral, Food and Pharmaceutical Compounds.” J. Membr. Sci., 550 407–415 (2018)

    Article  CAS  Google Scholar 

  22. Madsen, RS, Motuzas, J, Vaughan, J, Julbe, A, da Costa, JC, “Fine Control of NaCl Crystal Size and Particle Size in Percrystallisation by Tuning the Morphology of Carbonised Sucrose Membranes.” J. Membr. Sci., 567 157–165 (2018)

    Article  CAS  Google Scholar 

  23. Darmawan, A, Sabarina, AF, Bima, DN, Muhtar, H, Kartikowati, CW, Saraswati, TE, “New Design of Graphene Oxide on Macroporous Nylon Assisted Polyvinyl Alcohol with Zn (II) Cross-Linker for Pervaporation Desalination.” Chem. Eng. Res. Des., 195 54–64 (2023)

    Article  CAS  Google Scholar 

  24. Lee, J, Roux, S, Le Roux, E, Keller, S, Rega, B, Bonazzi, C, “Unravelling Caramelization and Maillard Reactions in Glucose and Glucose + Leucine Model Cakes: Formation and Degradation Kinetics of Precursors, α-Dicarbonyl Intermediates and Furanic Compounds During Baking.” Food Chem., 376 131917 (2022)

    Article  CAS  Google Scholar 

  25. Quintas, M, Guimarães, C, Baylina, J, Brandão, TRS, Silva, CLM, “Multiresponse Modelling of the Caramelisation Reaction.” Innov. Food Sci. Emerg. Technol., 8 (2) 306–315 (2007)

    Article  CAS  Google Scholar 

  26. Lavanya, C, Soontarapa, K, Jyothi, MS, Geetha Balakrishna, R, “Environmental Friendly and Cost Effective Caramel for Congo Red Removal, High Flux, and Fouling Resistance of Polysulfone Membranes.” Sep. Purif. Technol., 211 348–358 (2019)

    Article  CAS  Google Scholar 

  27. Xu, N, Lu, C, Zheng, T, Qiu, S, Liu, Y, Zhang, D, Xiao, D, Liu, G, “Enhanced Mechanical Properties of Carbon Fibre/Epoxy Composites via In Situ Coating-Carbonisation of Micron-Sized Sucrose Particles on the Fibre Surface.” Mater. Des., 200 109458 (2021)

    Article  CAS  Google Scholar 

  28. Yousef, S, Eimontas, J, Striūgas, N, Abdelnaby, MA, “Influence of Carbon Black Filler on Pyrolysis Kinetic Behaviour and TG-FTIR-GC–MS Analysis of Glass Fibre Reinforced Polymer Composites.” Energy, 233 121167 (2021)

    Article  CAS  Google Scholar 

  29. Chen, H, Dou, B, Song, Y, Xu, Y, Zhang, Y, Wang, C, Zhang, X, Tan, C, “Pyrolysis Characteristics of Sucrose Biomass in a Tubular Reactor and a Thermogravimetric Analysis.” Fuel, 95 425–430 (2012)

    Article  CAS  Google Scholar 

  30. Wang, K, Cai, R, Yuan, T, Yu, X, Ran, R, Shao, Z, “Process Investigation, Electrochemical Characterization and Optimization of LiFePO4/C Composite from Mechanical Activation Using Sucrose as Carbon Source.” Electrochim. Acta, 54 (10) 2861–2868 (2009)

    Article  CAS  Google Scholar 

  31. Kaur, P, Elsayed, A, Subramanian, J, Singh, A, “Encapsulation of Carotenoids with Sucrose By Co-Crystallization: Physicochemical Properties, Characterization and Thermal Stability of Pigments.” LWT, 140 110810 (2021)

    Article  CAS  Google Scholar 

  32. Yang, Y, Zhou, H, Xiao, Y, Feng, L, Yang, L, Mu, W, Peng, X, Bao, L, Wang, J, “Hydrophobic Thermoplastic Starch Supramolecularly-Induced by a Functional Sucrose Based Ionic Liquid Crystal.” Carbohydr. Polym., 255 117363 (2021)

    Article  CAS  Google Scholar 

  33. Vazquez-Samperio, J, Acevedo-Peña, P, Guzmán-Vargas, A, Reguera, E, Córdoba-Tuta, E, “Sucrose-Based Reticulated Vitreous Carbon Foams and Their Modification with Nickel Hexacyanoferrate for Energy Storage Applications.” Diamond. Relat. Mater., 109 108084 (2020)

    Article  CAS  Google Scholar 

  34. Abd Jalil, SN, Wang, DK, Yacou, C, Motuzas, J, Smart, S, da Costa, JC, “Vacuum-Assisted Tailoring of Pore Structures of Phenolic Resin Derived Carbon Membranes.” J. Membr. Sci., 525 240–248 (2017)

    Article  CAS  Google Scholar 

  35. Martínez, JR, Velázquez-Pérez, SE, Serrano, GG, Espericueta, DL, Ortega-Zarzosa, G, Herrera-González, AM, Barrientos-Hernández, FR, Lobo-Guerrero, A, “Thermostructural Behavior of Red Cochineal Dye Stabilized with Sucrose and Embedded in a Silica Xerogel Matrix.” Physica B, 598 412438 (2020)

    Article  Google Scholar 

  36. Zhao, H, Lu, X, Wang, Y, Sun, B, Wu, X, Lu, H, “Effects of Additives on Sucrose-Derived Activated Carbon Microspheres Synthesized by Hydrothermal Carbonization.” J. Mater. Sci., 52 10787–10799 (2017)

    Article  CAS  Google Scholar 

  37. Ho, C-Y, Wang, H-W, “Characteristics of Thermally Reduced Graphene Oxide and Applied for Dye-Sensitized Solar Cell Counter Electrode.” Appl. Surf. Sci., 357 147–154 (2015)

    Article  CAS  Google Scholar 

  38. Rollings, RC, Kuan, AT, Golovchenko, JA, “Ion Selectivity of Graphene Nanopores.” Nat. Commun., 7 (1) 11408 (2016)

    Article  CAS  Google Scholar 

  39. Sun, Z, Wu, K, Shi, J, Zhang, T, Feng, D, Wang, S, Liu, W, Mao, S, Li, X, “Effect of Pore Geometry on Nanoconfined Water Transport Behavior.” AlChE J., 65 (8) e16613 (2019)

    Article  Google Scholar 

  40. Yang, Y, Lin, B, Sun, C, Tang, M, Lu, S, Huang, Q, Yan, J, “Facile Synthesis of Tailored Mesopore-Enriched Hierarchical Porous Carbon from Food Waste for Rapid Removal of Aromatic VOCs.” Sci. Total Environ., 773 145453 (2021)

    Article  CAS  Google Scholar 

  41. Tanaka, S, Yasuda, T, Katayama, Y, Miyake, Y, “Pervaporation Dehydration Performance of Microporous Carbon Membranes Prepared from Resorcinol/Formaldehyde Polymer.” J. Membr. Sci., 379 (1–2) 52–59 (2011)

    Article  CAS  Google Scholar 

  42. Silviana, S, Darmawan, A, Subagyo, A, Dalanta, F, “Statistical Approaching for Superhydrophobic Coating Preparation Using Silica Derived from Geothermal Solid Waste.” ASEAN J. Chem. Eng., 1 91–99 (2019)

    Google Scholar 

  43. Prihatiningtyas, I, Hartanto, Y, Van der Bruggen, B, “Ultra-High Flux Alkali-Treated Cellulose Triacetate/Cellulose Nanocrystal Nanocomposite Membrane for Pervaporation Desalination.” Chem. Eng. Sci., 231 116276 (2021)

    Article  CAS  Google Scholar 

  44. Muhtar, H, Darmawan, A, “Fabrication of Negatively Charged Nanofiltration Membrane of Modified Polystyrene Intercalated Graphene Oxide for Pervaporation Desalination.” Chem. Eng. J., 16 146095 (2023)

    Article  Google Scholar 

  45. Yang, H, Elma, M, Wang, DK, Motuzas, J, da Costa, JC, “Interlayer-Free Hybrid Carbon-Silica Membranes for Processing Brackish to Brine Salt Solutions by Pervaporation.” J. Membr. Sci., 523 197–204 (2017)

    Article  CAS  Google Scholar 

  46. Prihatiningtyas, I, Van der Bruggen, B, “Nanocomposite Pervaporation Membrane for Desalination.” Chem. Eng. Res. Des., 164 147–161 (2020)

    Article  CAS  Google Scholar 

  47. Sazali, N, “A Review of the Application of Carbon-Based Membranes to Hydrogen Separation.” J. Mater. Sci., 55 (25) 11052–11070 (2020)

    Article  CAS  Google Scholar 

  48. Cotruvo, J, “2017 WHO Guidelines for Drinking Water Quality: First Addendum to the Fourth Edition.” J. Am. Water Work. Assoc., 109 44-51 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by Universitas Diponegoro via World-Class Research (Number: 118-07/UN7.6.1/PP/2021).

Author information

Authors and Affiliations

Authors

Contributions

AD made conceptualization, methodology, study design, validation, formal analysis, provided resources, writing-review and editing, supervision, and funding acquisition. HUN carried out methodology, analyzed using software, conducted investigations, and wrote original drafts. ASW collected long-term desalination data. HM conducted the analysis using software, formal analysis, data curation and writing, review and editing, and refined visualization. YA did validation and supervision.

Corresponding author

Correspondence to Adi Darmawan.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This research does not involve humans and animals as objects of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darmawan, A., Nurfadila, H.U., Wahyuni, A.S. et al. Sucrose-derived carbon membranes for sustainable water desalination. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-023-00866-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-023-00866-4

Keywords

Navigation