Skip to main content

Advertisement

Log in

A review of the application of carbon-based membranes to hydrogen separation

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogen (H2) is a green clean fuel and chemical feedstock. Its separation and purification from H2-containing mixtures is the key step in the production of H2 with high purity (> 99.99%). Carbon membranes emerged in the 70 s and have provided promising results for applications in processes involving gas separation due to their sieving effects. Particularly, in this review, a general concept route of precursor selection-preparation-modification-performance analysis platform for the carbon membrane has been proposed to promote the development of carbon membrane material for a wide range of application. Several main parts are highlighted which are carbon membrane preparation, precursor selection, precursor pre-treatment covering pyrolysis process, carbonized membrane, pos-treatment and as well as module fabrication in order to improve the separation capability of gas mixtures in respect to permeability and selectivity. The variables of pre-treatment, the parameters of the pyrolysis process and the conditions of the post-treatment are manipulated and implied as a chance to maximize the performance of carbon membrane separation in the coming future. This review will specify an insight into the latest researches, which is expected to offer worthy implications to academicians and industry professionals working in industrial domain for the hydrogen separation. For future perspective, carbon membranes hold significant potential and great promise for further investigation, development and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bernardo G, Araújo T, da Silva LT, Sousa J, Mendes A (2019) Recent advances in membrane technologies for hydrogen purification. Int J Hydrogen Energy 45:7313–7338

    Article  CAS  Google Scholar 

  2. Sołowski G, Shalaby MS, Abdallah H, Shaban AM, Cenian A (2018) Production of hydrogen from biomass and its separation using membrane technology. Renew Sust Energy Rev 82:3152–3167

    Article  CAS  Google Scholar 

  3. Castel C, Wang L, Corriou JP, Favre E (2018) Steady vs unsteady membrane gas separation processes. Chem Eng Sci 183:136–147

    Article  CAS  Google Scholar 

  4. Merkel TC, Turk BS, Gupta RP, Cicero DC, Jain SC (2002) A hybrid gas cleaning process for production of ultraclean syngas. United States. https://www.osti.gov/biblio/837307-hybrid-gas-cleaning-process-production-ultraclean-syngas. Accessed 28 Apr 2020

  5. Hirota Y, Nishiyama N (2016) Pore size control of microporous carbon membranes and application to H2 separation. J Jpn Petrol Inst 59:266–275

    Article  CAS  Google Scholar 

  6. Hamm JBS, Ambrosi A, Griebeler JG, Marcilio NR, Tessaro IC, Pollo LD (2017) Recent advances in the development of supported carbon membranes for gas separation. Int J Hydrogen Energy 42:24830–24845

    Article  CAS  Google Scholar 

  7. Owais C, James A, John C, Dhali R, Swathi R (2018) Selective permeation through one-atom-thick nanoporous carbon membranes: theory reveals excellent design strategies! J Phys Chem B 122:5127–5146

    Article  CAS  Google Scholar 

  8. Koresh J, Soffer A (1980) Molecular sieving range of pore diameters of adsorbents. J Chem Soc Faraday Trans 76(1):2507–2509

    Article  CAS  Google Scholar 

  9. Zhang K, Way JD (2017) Palladium-copper membranes for hydrogen separation. Sep Purif Technol 186:39–44

    Article  CAS  Google Scholar 

  10. Ernst B, Haag S, Burgard M (2007) Permselectivity of a nickel/ceramic composite membrane at elevated temperatures: a new prospect in hydrogen separation. J Membr Sci 288:208–217

    Article  CAS  Google Scholar 

  11. Bounaceur R, Berger E, Pfister M, Ramirez Santos AA, Favre E (2017) Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool. J Membr Sci 523:77–91

    Article  CAS  Google Scholar 

  12. Lau CH, Nguyen PT, Hill MR, Thornton AW, Konstas K, Doherty CM (2014) Ending aging in super glassy polymer membranes. Angew Chem Int Ed 53:5322–5326

    Article  CAS  Google Scholar 

  13. Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45:3298–3311

    Article  CAS  Google Scholar 

  14. Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers, membranes for gas and vapor separation. Wiley, MHoboken

    Google Scholar 

  15. Cheng L-H, Fu Y-J, Liao K-S, Chen J-T, Hu C-C, Hung W-S (2014) A high-permeance supported carbon molecular sieve membrane fabricated by plasma-enhanced chemical vapor deposition followed by carbonization for CO2 capture. J Membr Sci 460:1–8

    Article  CAS  Google Scholar 

  16. Sazali N, Norharyati W, Ismail A, Wong K, Iwamoto Y (2018) Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations. J Appl Polym Sci 136:1–9

    Google Scholar 

  17. Gharari R, Kazeminejad H, Mataji Kojouri N, Hedayat A (2018) A review on hydrogen generation, explosion, and mitigation during severe accidents in light water nuclear reactors. Int J Hydrogen Energy 43:1939–1965

    Article  CAS  Google Scholar 

  18. Yuzer B, Selcuk H, Chehade G, Demir ME, Dincer I (2020) Evaluation of hydrogen production via electrolysis with ion exchange membranes. Energy 190:1–25

    Article  CAS  Google Scholar 

  19. El-Shafie MI, Kambara S, Hayakawa Y (2019) Hydrogen production technologies overview. J Energy Eng-Asce 7:107–154

    Google Scholar 

  20. Deheri C, Acharya SK, Thatoi DN, Mohanty AP (2020) A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. Fuel 260:1–17

    Article  CAS  Google Scholar 

  21. Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrogen Energy 45:3847–3869

    Article  CAS  Google Scholar 

  22. Acar C, Dincer I (2019) Review and evaluation of hydrogen production options for better environment. J Clean Prod 218:835–849

    Article  CAS  Google Scholar 

  23. Dos Santos KG, Eckert CT, De Rossi E, Bariccatti RA, Frigo EP, Lindino CA (2017) Hydrogen production in the electrolysis of water in Brazil, a review. Renew Sust Energy Rev 68:563–571

    Article  Google Scholar 

  24. Pleßmann G, Erdmann M, Hlusiak M, Breyer C (2014) Global energy storage demand for a 100% renewable electricity supply. Energy Procedia 46:22–31

    Article  Google Scholar 

  25. Boudries R, Khellaf A, Aliane A, Ihaddaden L, Khida F (2014) PV system design for powering an industrial unit for hydrogen production. Int J Hydrogen Energy 39:15188–15195

    Article  CAS  Google Scholar 

  26. Abdin Z, Zafaranloo A, Rafiee A, Mérida W, Lipiński W, Khalilpour KR (2020) Hydrogen as an energy vector. Renew Sust Energy Rev 120:1–32

    Article  CAS  Google Scholar 

  27. Salleh WNW, Ismail AF (2013) Effect of stabilization condition on PEI/PVP-based carbon hollow fiber membranes properties. Sep Sci Technol 48:1030–1039

    Article  CAS  Google Scholar 

  28. Ma L, Lv E, Du L, Han Y, Lu J, Ding J (2017) A flow-through tubular catalytic membrane reactor using zirconium sulfate tetrahydrate-impregnated carbon membranes for acidified oil esterification. J Energy Inst 90:875–883

    Article  CAS  Google Scholar 

  29. Ma C, Yu J, Wang B, Song Z, Xiang J, Hu S (2016) Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: a review. Renew Sust Energy Rev 61:433–450

    Article  CAS  Google Scholar 

  30. Ismail AF, David LIB (2001) A review on the latest development of carbon membranes for gas separation. J Membr Sci 193:1–18

    Article  CAS  Google Scholar 

  31. Ismail NH, Salleh WNW, Sazali N, Ismail AF (2015) The effect of polymer composition on CO2/CH4 separation of supported carbon membrane. Chem Eng Trans 45:1465–1470

    Google Scholar 

  32. Zhang Q, Wang H, Fan X, Lv F, Chen S, Quan X (2016) Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment. Surf Coat Technol 298:45–52

    Article  CAS  Google Scholar 

  33. Sarango L, Paseta L, Navarro M, Zornoza B, Coronas J (2018) Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration. J Ind Eng Chem 59:8–16

    Article  CAS  Google Scholar 

  34. Zeynali R, Ghasemzadeh K, Sarand AB, Kheiri F, Basile A (2018) Performance evaluation of graphene oxide (GO) nanocomposite membrane for hydrogen separation: effect of dip coating sol concentration. Sep Sci Technol 200:169–176

    CAS  Google Scholar 

  35. Rodrigues SC, Whitley R, Mendes A (2014) Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin. J Membr Sci 459:207–216

    Article  CAS  Google Scholar 

  36. Ismail NH, Salleh WNW, Sazali N, Ismail AF, Yusof N, Aziz F (2018) Disk supported carbon membrane via spray coating method: effect of carbonization temperature and atmosphere. Sep Sci Technol 195:295–304

    CAS  Google Scholar 

  37. Sazali N, Salleh WNW, Ismail AF, Nordin NAHM, Ismail NH, Mohamed MA (2018) Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance. J Nat Gas Sci Eng 49:376–384

    Article  CAS  Google Scholar 

  38. Shen Y, Lua AC (2012) Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)–silica nanocomposite membranes for gas separation. Chem Eng J 188:199–209

    Article  CAS  Google Scholar 

  39. Li D, Zhu HY, Ratinac KR, Ringer SP, Wang H (2009) Synthesis and characterization of sodalite–polyimide nanocomposite membranes. Micropor Mesopor Mat 126:14–19

    Article  CAS  Google Scholar 

  40. Zou D, Xu J, Chen X, Drioli E, Qiu M, Fan Y (2019) A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment. Sep Purif Technol 219:127–136

    Article  CAS  Google Scholar 

  41. Akhgar A, Toghraie D (2018) An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technol 338:806–818

    Article  CAS  Google Scholar 

  42. Alexopoulos ND, Gegitsidis FD, Kourkoulis SK, Favvas EP (2017) Mechanical behavior of MWCNTs based mixed-matrix polymeric and carbon hollow fiber membranes. Sep Purif Technol 183:21–31

    Article  CAS  Google Scholar 

  43. Jiao W, Ban Y, Shi Z, Jiang X, Li Y, Yang W (2016) High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework ZIF-108 doped polyimide matrices. Chem Commun 52:13779–13782

    Article  CAS  Google Scholar 

  44. Roy S, Das R, Gagrai MK, Sarkar S (2016) Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation. J Porous Mater 23:1653–1662

    Article  CAS  Google Scholar 

  45. Campo MC, Visser T, Nijmeijer K, Wessling M, Magalhães FD, Mendes AM (2009) Influence of pyrolysis parameters on the performance of CMSM. Int J Chem Eng 2009:6–10

    Article  CAS  Google Scholar 

  46. Haider S, Lindbråthen A, Lie JA, Andersen ICT, Hägg M-B (2018) CO2 separation with carbon membranes in high pressure and elevated temperature applications. Sep Purif Technol 190:177–189

    Article  CAS  Google Scholar 

  47. Kamath MG, Fu S, Itta AK, Qiu W, Liu G, Swaidan R (2018) 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: Circumventing unusual aging phenomena. J Membr Sci 546:197–205

    Article  CAS  Google Scholar 

  48. Kim S-J, Lee PS, Chang J-S, Nam S-E, Park Y-I (2018) Preparation of carbon molecular sieve membranes on low-cost alumina hollow fibers for use in C3H6/C3H8 separation. Sep Purif Technol 194:443–450

    Article  CAS  Google Scholar 

  49. Choi S-H, Sultan MMB, Alsuwailem AA, Zuabi SM (2019) Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures. Sep Purif Technol 222:152–161

    Article  CAS  Google Scholar 

  50. Zhang J, Xue Q, Pan X, Jin Y, Lu W, Ding D (2017) Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chem Eng J 307:643–649

    Article  CAS  Google Scholar 

  51. Fan H, Ran F, Zhang X, Song H, Jing W, Shen K (2014) A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes: preparation, characterization and electrochemical capacitive performance. J Energy Chem 23:684–693

    Article  Google Scholar 

  52. Karpacheva G, Ermilova M, Orekhova N, Efimov M, Zemtsov L, Tereshchenko G (2012) Nanostructured metal–carbon membrane catalysts based on carbonized PAN. Catal Today 186:7–11

    Article  CAS  Google Scholar 

  53. Tanaka S, Yasuda T, Katayama Y, Miyake Y (2011) Pervaporation dehydration performance of microporous carbon membranes prepared from resorcinol/formaldehyde polymer. J Membr Sci 379:52–59

    Article  CAS  Google Scholar 

  54. Zhang X, Hu H, Zhu Y, Zhu S (2007) Carbon molecular sieve membranes derived from phenol formaldehyde novolac resin blended with poly(ethylene glycol). J Membr Sci 289:86–91

    Article  CAS  Google Scholar 

  55. Medrano JA, Garofalo A, Donato L, Basile F, De Santo MP, Gallucci F (2018) CO selective oxidation using catalytic zeolite membranes. Chem Eng J 351:40–47

    Article  CAS  Google Scholar 

  56. Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata). Carbohydr Polym 181:1038–1051

    Article  CAS  Google Scholar 

  57. Abd Jalil SN, Wang DK, Yacou C, Motuzas J, Smart S (2017) Diniz da Costa JC, Vacuum-assisted tailoring of pore structures of phenolic resin derived carbon membranes. J Membr Sci 525:240–248

    Article  CAS  Google Scholar 

  58. Ostwal M, Lau JM, Orme CJ, Stewart FF, Way JD (2009) The influence of temperature on the sorption and permeability of CO2 in poly(fluoroalkoxyphosphazene) membranes. J Membr Sci 344:199–203

    Article  CAS  Google Scholar 

  59. Burra KRG, Bassioni G, Gupta AK (2018) Catalytic transformation of H2S for H2 production. Int J Hydrogen Energy 43:22852–22860

    Article  CAS  Google Scholar 

  60. Hong X, Zhang B, Zhang X, Wu Y, Wang T, Qiu J (2019) Tailoring the structure and property of microfiltration carbon membranes by polyacrylonitrile-based microspheres for oil-water emulsion separation. J Water Process Eng 32:1–9

    Article  Google Scholar 

  61. Bao Y, Tay YS, Lim T-T, Wang R, Webster RD, Hu X (2019) Polyacrylonitrile (PAN)-induced carbon membrane with in-situ encapsulated cobalt crystal for hybrid peroxymonosulfate oxidation-filtration process: preparation, characterization and performance evaluation. Chem Eng J 373:425–436

    Article  CAS  Google Scholar 

  62. Sazali N, Salleh WNW, Ismail AF (2017) Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. Int J Hydrogen Energy 42:9952–9957

    Article  CAS  Google Scholar 

  63. Nisar J, Ali G, Ullah N, Awan IA, Iqbal M, Shah A (2018) Pyrolysis of waste tire rubber: influence of temperature on pyrolysates yield. J Environ Chem Eng 6:3469–3473

    Article  CAS  Google Scholar 

  64. Mei W, Du Y, Wu T, Gao F, Wang B, Duan J (2018) High-flux CHA zeolite membranes for H2 separations. J Membr Sci 565:358–369

    Article  CAS  Google Scholar 

  65. Ordoñez MJC, Balkus KJ, Ferraris JP, Musselman IH (2010) Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J Membr Sci 361:28–37

    Article  CAS  Google Scholar 

  66. Cheng XQ, Wang ZX, Jiang X, Li T, Lau CH, Guo Z (2018) Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Prog Mater Sci 92:258–283

    Article  CAS  Google Scholar 

  67. Etxeberria-Benavides M, Johnson T, Cao S, Zornoza B, Coronas J, Sanchez-Lainez J (2020) PBI mixed matrix hollow fiber membrane: influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure. Sep Purif Technol 237:1–10

    Article  CAS  Google Scholar 

  68. Kluiters SC, Van Den Brink RW, Haije WG (2010) Advanced oxygen production systems for power plants with integrated carbon dioxide (CO2) capture. In: Maroto-Valer MM (ed) Developments and innovation in carbon dioxide (CO2) capture and storage technology. Woodhead Publishing, Sawston, pp 320–357

    Chapter  Google Scholar 

  69. Yáñez M, Ortiz A, Gorri D, Ortiz I (2020) Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.04.026

    Article  Google Scholar 

  70. Liu Z, Fan J (2014) Technology readiness assessment of small modular reactor (SMR) designs. Prog Nucl Energy 70:20–28

    Article  Google Scholar 

  71. Mignacca B, Locatelli G (2020) Economics and finance of small modular reactors: a systematic review and research agenda. Renew Sust Energy Rev 118:1–15

    Article  Google Scholar 

  72. Wu W, Yang Q, Su B (2018) Centimeter-scale continuous silica isoporous membranes for molecular sieving. J Membr Sci 558:86–93

    Article  CAS  Google Scholar 

  73. Hazazi K, Ma X, Wang Y, Ogieglo W, Alhazmi A, Han Y (2019) Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor. J Membr Sci 585:1–9

    Article  CAS  Google Scholar 

  74. Han W, Dong S, Li B, Ge L (2017) Preparation of polyacrylonitrile- based porous hollow carbon microspheres. Colloids Surf A 520:467–476

    Article  CAS  Google Scholar 

  75. Sim YH, Wang H, Li FY, Chua ML, Chung T-S, Toriida M (2013) High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications. Carbon 53:101–111

    Article  CAS  Google Scholar 

  76. Salleh WNW, Ismail AF (2015) Carbon membranes for gas separation processes: recent progress and future perspective. J Membr Sci Res 1:2–15

    Google Scholar 

  77. Briceño K, Iulianelli A, Montané D, Garcia-Valls R, Basile A (2012) Carbon molecular sieve membranes supported on non-modified ceramic tubes for hydrogen separation in membrane reactors. Int J Hydrogen Energy 37:13536–13544

    Article  CAS  Google Scholar 

  78. Li L, Xu R, Song C, Zhang B, Liu Q, Wang T (2018) A review on the progress in nanoparticle/c hybrid CMS membranes for gas separation. Membranes (Basel) 8:134–166

    Article  CAS  Google Scholar 

  79. Lee P-S, Kim D, Nam S-E, Bhave RR (2016) Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations. Microporous Mesoporous Mater 224:332–338

    Article  CAS  Google Scholar 

  80. Ogieglo W, Puspasari T, Hota MK, Wehbe N, Alshareef HN, Pinnau I (2020) Nanohybrid thin-film composite carbon molecular sieve membranes. Mater Today Nano 9:100065

    Article  Google Scholar 

  81. Sanyal O, Hicks ST, Bhuwania N, Hays S, Kamath MG, Karwa S (2018) Cause and effects of hyperskin features on carbon molecular sieve (CMS) membranes. J Membr Sci 551:113–122

    Article  CAS  Google Scholar 

  82. Zhang ZP, Rong MZ, Zhang MQ (2018) Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog Polym Sci 80:39–93

    Article  CAS  Google Scholar 

  83. Hu C-P, Polintan CK, Tayo LL, Chou S-C, Tsai H-A, Hung W-S (2019) The gas separation performance adjustment of carbon molecular sieve membrane depending on the chain rigidity and free volume characteristic of the polymeric precursor. Carbon 143:343–351

    Article  CAS  Google Scholar 

  84. Czympiel L, Frank M, Mettenbörger A, Hühne S-M, Mathur S (2018) High activity heterogeneous catalysts by plasma-enhanced chemical vapor deposition of volatile palladium complexes on biomorphic carbon. CR Chim 21:943–951

    Article  CAS  Google Scholar 

  85. Tseng H-H, Wang C-T, Zhuang G-L, Uchytil P, Reznickova J, Setnickova K (2016) Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: effects of TiO2 intermediate layer preparation variables on interfacial adhesion. J Membr Sci 510:391–404

    Article  CAS  Google Scholar 

  86. Llosa Tanco MA, Pacheco Tanaka DA, Mendes A (2015) Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: effect of the carbonization temperature on the gas permeation properties. Int J Hydrogen Energy 40:3485–3496

    Article  CAS  Google Scholar 

  87. Shin JH, Yu HJ, Park J, Lee AS, Hwang SS, Kim S-J (2020) Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation. J Membr Sci 598:1–9

    Article  CAS  Google Scholar 

  88. Borghei M, Laocharoen N, Kibena-Põldsepp E, Johansson L-S, Campbell J, Kauppinen E, Porous N (2017) P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells. Appl Catal B 294:394–402

    Article  CAS  Google Scholar 

  89. Rodrigues SC, Andrade M, Moffat J, Magalhães FD, Mendes A (2019) Preparation of carbon molecular sieve membranes from an optimized ionic liquid-regenerated cellulose precursor. J Membr Sci 572:390–400

    Article  CAS  Google Scholar 

  90. Gilron J, Soffer A (2002) Knudsen diffusion in microporous carbon membranes with molecular sieving character. J Membr Sci 209:339–352

    Article  CAS  Google Scholar 

  91. Wan SWN, Fauzi IA (2012) Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE J 58:3167–3175

    Article  CAS  Google Scholar 

  92. Cao L, Tao K, Huang A, Kong C, Chen L (2013) A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chem Commun 49:8513–8515

    Article  CAS  Google Scholar 

  93. Sánchez-Laínez J, Zornoza B, Mayoral Á, Berenguer-Murcia Á, Cazorla-Amorós D, Téllez C (2015) Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. J Mater Chem A 3:6549–6556

    Article  CAS  Google Scholar 

  94. Rohani R, Kalkhorana H, Chung YT (2019) Polymeric mixed matrix membranes incorporated with graphene oxide for H2/CO2 separation. J Teknol 81:19–20

    Google Scholar 

  95. Ali A, Pothu R, Siyal SH, Phulpoto S, Sajjad M, Thebo KH (2019) Graphene-based membranes for CO2 separation. Mater Sci Energy Technol 2:83–88

    Google Scholar 

  96. Chen M, Soyekwo F, Zhang Q, Hu C, Zhu A, Liu Q (2018) Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. J Ind Eng Chem 63:296–302

    Article  CAS  Google Scholar 

  97. Liu Y (2019) Beyond graphene oxides: emerging 2D molecular sieve membranes for efficient separation. Chin J Chem Eng 27:1257–1271

    Article  CAS  Google Scholar 

  98. Sun C, Bai B (2017) Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation. Sci Bull 63:554–562

    Article  CAS  Google Scholar 

  99. Hatori H, Takagi H, Yamada Y (2004) Gas separation properties of molecular sieving carbon membranes with nanopore channels. Carbon 42:1169–1173

    Article  CAS  Google Scholar 

  100. Rao MB, Sircar S (1993) Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 85:253–264

    Article  CAS  Google Scholar 

  101. Wei L, Hu X, Yu J, Huang Y (2014) Aluminizing and oxidation treatments on the porous stainless steel substrate for preparation of H2-permeable composite palladium membranes. Int J Hydrogen Energy 39:18618–18624

    Article  CAS  Google Scholar 

  102. He X, Hägg M-B (2012) Structural, kinetic and performance characterization of hollow fiber carbon membranes. J Membr Sci 390:23–31

    Article  CAS  Google Scholar 

  103. Hu T, Zhou H, Peng H, Jiang H (2018) Nitrogen production by efficiently removing oxygen from air using a perovskite hollow-fiber membrane with porous catalytic layer. Front Chem 6:329–342

    Article  CAS  Google Scholar 

  104. Takht Ravanchi M, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235:199–244

    Article  CAS  Google Scholar 

  105. LeValley TL, Richard AR, Fan M (2014) The progress in water gas shift and steam reforming hydrogen production technologies—a review. Int J Hydrogen Energy 39:16983–17000

    Article  CAS  Google Scholar 

  106. Vieira-Linhares A, Seaton N (2003) Pore network connectivity effects on gas separation in a microporous carbon membrane. Chem Eng Sci 58:5251–5256

    Article  CAS  Google Scholar 

  107. Hirota Y, Ishikado A, Uchida Y, Egashira Y, Nishiyama N (2013) Pore size control of microporous carbon membranes by post-synthesis activation and their use in a membrane reactor for dehydrogenation of methylcyclohexane. J Membr Sci 440:134–139

    Article  CAS  Google Scholar 

  108. Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175:181–196

    Article  CAS  Google Scholar 

  109. Zhu X, Li S, Shi Y, Cai N (2019) Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog Energy Combust 75:1–40

    Article  Google Scholar 

  110. De Crisci AG, Moniri A, Xu Y (2019) Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy. Int J Hydrogen Energy 44:1–19

    Article  CAS  Google Scholar 

  111. Rosner F, Chen Q, Rao A, Samuelsen S (2019) Thermo-economic analyses of concepts for increasing carbon capture in high-methane syngas integrated gasification combined cycle power plants. Energy Convers Manag 199:1–23

    Article  CAS  Google Scholar 

  112. Robeson L (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    Article  CAS  Google Scholar 

  113. Ahmad Z, Al-Awadi NA, Al-Sagheer F (2008) Thermal degradation studies in poly(vinyl chloride)/poly(methyl methacrylate) blends. Polym Degrad Stab 93:456–465

    Article  CAS  Google Scholar 

  114. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

  115. Freeman B (1999) Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32:375–380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author would gratefully acknowledge the financial support from the Ministry of Higher Education and Collaborative Research Grant (CRG) (RDU 192315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norazlianie Sazali.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazali, N. A review of the application of carbon-based membranes to hydrogen separation. J Mater Sci 55, 11052–11070 (2020). https://doi.org/10.1007/s10853-020-04829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04829-7

Navigation