Skip to main content

Advertisement

Log in

Chemistry and application of emerging ecofriendly antifouling paints: a review

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

There has been a global concern about the use of tributyltin-based coatings in combating biofouling in the marine industry. Although there have been alternatives to tributyltin in preventing biofouling, the emphasis is now on the use of nontoxic and/or ecofriendly natural materials which do not negatively affect the environment upon application. Natural materials are ecofriendly, biodegradable, cost-effective, and can be employed as precursors in the synthesis and formulation of biodegradable antifouling coatings. Consequently, many researchers are investing time into the synthesis and formulation of natural, ecofriendly antifouling coatings, comprised of higher biofiber, which would perform analogous antifouling like other conventional coatings, thus minimizing the more toxic base polymer proportion. A safe environment is surely the signal of a bright future; hence, cost-effective, biodegradable raw materials result in a long-term attainment of sustainability of these products to replace the expensive conventional ones. This review presents an overview of ecologically friendly, cost-effective, and legally acceptable ways of preventing and mitigating the growth of algae and other marine organisms from settling on the hull of a ship and other static constructions in oilfields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Stages of marine biofouling
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ciriminna, R, Bright, FV, Pagliaro, M, “Ecofriendly Antifouling Marine Coatings.” ACS Sustain. Chem. Eng., 3 (4) 559–565 (2015)

    CAS  Google Scholar 

  2. McVay, IR, Maher, WA, Krikowa, F, Ubrhien, R, “Metal Concentrations in Waters, Sediments and Biota of the Far South-East Coast of New South Wales, Australia, with an Emphasis on Sn, Cu and Zn Used as Marine Antifoulant Agents.” Environ. Geochem. Health, 41 (3) 1351–1367 (2019)

    CAS  Google Scholar 

  3. Magin, CM, Cooper, SP, Brennan, AB, “Non-toxic Antifouling Strategies.” Materials Today, 13 (4) 36–44 (2010)

    CAS  Google Scholar 

  4. Ulaeto, SB, Rajan, R, Pancrecious, JK, Rajan, TPD, Pai, BC, “Developments in Smart Anticorrosive Coatings with Multifunctional Characteristics.” Prog. Org. Coat., 111 (1) 294–314 (2017)

    CAS  Google Scholar 

  5. Yebra, DM, Weinell, CE, “Key Issues in the Formulation of Marine Antifouling Paints.” In: Hellio, C, Yebra, D (eds.) Advances in Marine Antifouling Coatings and Technologies, pp. 308–333. Woodhead Publishing Limited, Sawston (2009)

    Google Scholar 

  6. Shevchenko, VY, Shilova, OA, Kochina, TA, “Environmentally Friendly Protective Coatings for Transport.” Her. Russ. Acad. Sci., 89 (3) 279–286 (2019)

    Google Scholar 

  7. IMO, “Focus on IMO: Anti-fouling Systems.” Int. Marit. Organ., 44 1–31 (2002)

    Google Scholar 

  8. Hemaida, HAE, Ali, AED, Sadek, SMM, “Potential Anti-Fouling Agents: Metal Complexes of 3-(2-Furylidene)hydrazino-5,6-diphenyl-1,2,4-triazine.” Pigment Resin Technol., 37 (4) 243–249 (2008)

    CAS  Google Scholar 

  9. Almeida, E, Diamantino, TC, de Sousa, O, “Marine Paints: The Particular Case of Antifouling Paints.” Prog. Org. Coat., 59 (1) 2–20 (2007)

    CAS  Google Scholar 

  10. Amara, I, Miled, W, Ben, Slama R, Ladhari, N, “Antifouling Processes and Toxicity Effects of Antifouling Paints on Marine Environment: A Review.” Environ. Toxicol. Pharmacol., 57 115–130 (2018)

    CAS  Google Scholar 

  11. Idora, MSN, Ferry, M, Wan Nik, WB, Jasnizat, S, “Evaluation of Tannin from Rhizophora apiculata as Natural Antifouling Agents in Epoxy Paint for Marine Application.” Prog. Org. Coat., 81 125–131 (2015)

    Google Scholar 

  12. Pérez, M, García, M, Blustein, G, “Evaluation of Low Copper Content Antifouling Paints Containing Natural Phenolic Compounds as Bioactive Additives.” Mar. Environ. Res., 109 177–184 (2015)

    Google Scholar 

  13. Bellotti, N, Deyá, C, Del Amo, B, Romagnoli, R, “Antifouling Paints with Zinc ‘Tannate’.” Ind. Eng. Chem. Res., 49 (7) 3386–3390 (2010)

    CAS  Google Scholar 

  14. Cao, S, Wang, JD, Chen, HS, Chen, DR, “Progress of Marine Biofouling and Antifouling Technologies.” Chinese Sci. Bull., 56 (7) 598–612 (2011)

    CAS  Google Scholar 

  15. Qian, P, Li, Z, Xu, Y, Li, Y, Fusetani, N, “Mini-review: Marine Natural Products and Their Synthetic Analogs as Antifouling Compounds: 2009–2014.” Biofouling, 31 (1) 101–122 (2015)

    CAS  Google Scholar 

  16. Ma, C, Zhang, W, Zhang, G, Qian, P, “Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant.” ACS Sustain. Chem. Eng., 5 (7) 6304–6309 (2017)

    CAS  Google Scholar 

  17. Rani, BEA, Basu, BBJ, “Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview.” Int. J. Corros. (2012). https://doi.org/10.1155/2012/380217

    Article  Google Scholar 

  18. Escobar, A, et al., “Alkyl 2-Furoates Obtained by Green Chemistry Procedures as Suitable New Antifoulants for Marine Protective Coatings.” J. Coat. Technol. Res., 16 (1) 159–166 (2019)

    CAS  Google Scholar 

  19. Punitha, N, Saravanan, P, Mohan, R, Ramesh, PS, “Antifouling Activities of β-Cyclodextrin Stabilized Peg Based Silver Nanocomposites.” Appl. Surf. Sci., 392 126–134 (2017)

    CAS  Google Scholar 

  20. Verma, S, Mohanty, S, Nayak, SK, “A Review on Protective Polymeric Coatings for Marine Applications.” J. Coat. Technol. Res., 16 (2) 307–338 (2019)

    CAS  Google Scholar 

  21. Ytreberg, E, Karlsson, J, Eklund, B, “Comparison of Toxicity and Release Rates of Cu and Zn from Anti-fouling Paints Leached in Natural and Artificial Brackish Seawater.” Sci. Total Environ., 408 (12) 2459–2466 (2010)

    CAS  Google Scholar 

  22. Achmad, AB, Synthesis of Metal-Tannate Complexes and Their Application as Antifoulant for Fish Cage Neys. University of Malaysia, Kuala Lumpur (2016)

    Google Scholar 

  23. Zhang, X, et al., “An Eco- and User-Friendly Herbicide.” J. Agric. Food Chem., 67 (28) 7783–7792 (2019)

    CAS  Google Scholar 

  24. Lee, MRN, Kim, UJ, Lee, IS, Choi, M, Oh, JE, “Assessment of Organotin and Tin-Free Antifouling Paints Contamination in the Korean Coastal Area.” Mar. Pollut. Bull., 99 (1–2) 157–165 (2015)

    CAS  Google Scholar 

  25. Lagerström, M, Yngsell, D, Eklund, B, Ytreberg, E, “Identification of Commercial and Recreational Vessels Coated with Banned Organotin Paint Through Screening of Tin by Portable XRF.” J. Hazard. Mater., 362 (September 2018) 107–114 (2019)

    Google Scholar 

  26. Nurioglu, AG, Esteves, ACC, de With, G, “Non-toxic, Non-biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B, 3 (32) 6547–6570 (2015)

    CAS  Google Scholar 

  27. Gopikrishnan, V, Radhakrishnan, M, Pazhanimurugan, R, Shanmugasundaram, T, Balagurunathan, R, “Natural Products: Potential and Less Explored Source for Antifouling Compounds.” J. Chem. Pharm. Res., 7 (7) 1144–1153 (2015)

    CAS  Google Scholar 

  28. Selim, MS, El-safty, SA, Shenashen, MA, Superhydrophobic Foul Resistant and Self-cleaning Polymer Coating. Elsevier, Amsterdam (2019)

    Google Scholar 

  29. Telegdi, J, Trif, L, Roma, L, “Smart Anti-biofouling Composite Coatings for Naval Applications.” In: Telegdi, J, Trif, L, Románszki, L (eds.) Composites Science and Engineering, pp. 123–155. Woodhead Publishing Limited, Sawston (2015)

    Google Scholar 

  30. Yan, T, Yan, WX, “Fouling of Offshore Structures in China—A Review.” Biofouling, 19 (supp 1) 133–138 (2003)

    Google Scholar 

  31. Palanichamy, S, Subramanian, G, “Antifouling Properties of Marine Bacteriocin Incorporated Epoxy Based Paint.” Prog. Org. Coat., 103 33–39 (2017)

    CAS  Google Scholar 

  32. Garcia, M, Stupak, M, Perez, M, Blustein, G, “Transitioning to Nontoxic Antifouling Paints.” Pigment Resin Technol., 44 (2) 116–121 (2015)

    CAS  Google Scholar 

  33. Li, Y, Ning, C, “Latest Research Progress of Marine Microbiological Corrosion and Bio-fouling, and New Approaches of Marine Anti-corrosion and Anti-fouling.” Bioact. Mater., 4 (December) 189–195 (2019)

    Google Scholar 

  34. Selim, MS, et al., “Modeling of Spherical Silver Nanoparticles in Silicone-Based Nanocomposites for Marine Antifouling.” RSC Adv., 5 (78) 63175–63185 (2015)

    CAS  Google Scholar 

  35. Detty, MR, Ciriminna, R, Bright, FV, Pagliaro, M, “Environmentally Benign Sol–Gel Antifouling and Foul-Releasing Coatings.” Acc. Chem. Res., 47 678–687 (2014)

    CAS  Google Scholar 

  36. Al-Fori, M, Dobretsov, S, Myint, MTZ, Dutta, J, “Antifouling Properties of Zinc Oxide Nanorod Coatings.” Biofouling, 30 (7) 871–882 (2014)

    CAS  Google Scholar 

  37. Yang, WJ, Neoh, KG, Kang, ET, Teo, SLM, Rittschof, D, “Polymer Brush Coatings for Combating Marine Biofouling.” Prog. Polym. Sci., 39 (5) 1017–1042 (2014)

    CAS  Google Scholar 

  38. Pugazhendhi, A, Prabakar, D, Jacob, JM, Karuppusamy, I, Saratale, RG, “Synthesis and Characterization of Silver Nanoparticles Using Gelidium amansii and Its Antimicrobial Property Against Various Pathogenic Bacteria.” Microb. Pathog., 114 41–45 (2018)

    CAS  Google Scholar 

  39. Burlibaşa, L, et al, “Synthesis, Physico-Chemical Characterization, Antimicrobial Activity and Toxicological Features of Ag ZnO Nanoparticles.” Arab. J. Chem. (2019). https://doi.org/10.1016/j.arabjc.2019.06.015

    Article  Google Scholar 

  40. Abed, RMM, Al Fahdi, D, Muthukrishnan, T, “Short-term Succession of Marine Microbial Fouling Communities and the Identification of Primary and Secondary Colonizers.” Biofouling, 35 526–540 (2019)

    CAS  Google Scholar 

  41. Legg, M, Yücel, MK, Garcia De Carellan, I, Kappatos, V, Selcuk, C, Gan, TH, “Acoustic Methods for Biofouling Control: A Review.” Ocean Engineering, 103 237–247 (2015)

    Google Scholar 

  42. Chapman, J, et al., “Bioinspired Synthetic Macroalgae: Examples from Nature for Antifouling Applications.” Int. Biodeterior. Biodegrad., 86 6–13 (2014)

    CAS  Google Scholar 

  43. Page, HM, Dugan, JE, Piltz, F, Fouling and Antifouling in Oil and Other Offshore Industries, pp. 252–266. Blackwell Publishing Ltd, Hoboken, NJ (2010)

    Google Scholar 

  44. Moodie, LWK, et al., “Prevention of Marine Biofouling Using the Natural Allelopathic Compound Batatasin-III and Synthetic Analogues.” J. Nat. Prod., 80 (7) 2001–2011 (2017)

    CAS  Google Scholar 

  45. Azemar, F, Faÿ, F, Réhel, K, Linossier, I, “Development of Hybrid Antifouling Paints.” Prog. Org. Coat., 87 10–19 (2015)

    CAS  Google Scholar 

  46. Agostini, VO, Macedo, AJ, Muxagata, E, da Silva, MV, Pinho, GLL, “Natural and Non-toxic Products from Fabaceae Brazilian Plants as a Replacement for Traditional Antifouling Biocides: An Inhibition Potential Against Initial Biofouling.” Environ. Sci. Pollut. Res., 26 (26) 27112–27127 (2019)

    CAS  Google Scholar 

  47. Pradhan, S, Kumar, S, Mohanty, S, Nayak, SK, “Environmentally Benign Fouling-Resistant Marine Coatings: A Review.” Polym. Technol. Mater., 58 (5) 498–518 (2019)

    CAS  Google Scholar 

  48. Le Norcy, T, et al., “Anti-biofilm Effect of Biodegradable Coatings Based on Hemibastadin Derivative in Marine Environment.” Int. J. Mol. Sci., 18 (1520) 1–19 (2017)

    Google Scholar 

  49. Rossini, P, Napolano, L, Matteucci, G, “Biotoxicity and Life Cycle Assessment of Two Commercial Antifouling Coatings in Marine Systems.” Chemosphere, 237 124475 (2019)

    Google Scholar 

  50. Lagerström, M, Lindgren, JF, Holmqvist, A, Dahlström, M, Ytreberg, E, “In Situ Release Rates of Cu and Zn from Commercial Antifouling Paints at Different Salinities.” Mar. Pollut. Bull., 127 (December 2017) 289–296 (2018)

    Google Scholar 

  51. Guardiola, FA, Cuesta, A, Meseguer, J, Esteban, MA, “Risks of Using Antifouling Biocides in Aquaculture.” Int. J. Mol. Sci., 13 (2) 1541–1560 (2012)

    CAS  Google Scholar 

  52. Antizar-Ladislao, B, “Environmental Levels, Toxicity and Human Exposure to Tributyltin (TBT)-Contaminated Marine Environment: A Review.” Environ. Int., 34 292–308 (2008)

    CAS  Google Scholar 

  53. Bray, S, Langston, W, Tributyltin Pollution on a Global Scale: An Overview of Relevant and Recent Research: Impacts and Issues. WWF, Godalming (2006)

    Google Scholar 

  54. Qian, P, Chen, L, Xu, Y, “Mini-review: Molecular Mechanisms of Antifouling Compounds.” Biofouling J. Bioadhesion Biofilm Res., 29 (4) 381–400 (2013)

    CAS  Google Scholar 

  55. Gibbs, PE, Bryan, GW, Pascoe, PL, Burt, GR, “The Use of the Dogwhelk, Nucella lapillus, as an Indicator of Tributyltin (TBT) Contamination.” J. Mar. Biol. Assoc. United Kingdom, 67 (3) 507–523 (1987)

    CAS  Google Scholar 

  56. Carteau, D, et al., “Development of Environmentally Friendly Antifouling Paints Using Biodegradable Polymer and Lower Toxic Substances.” Prog. Org. Coat., 77 (2) 485–493 (2014)

    CAS  Google Scholar 

  57. Peres, RS, Armelin, E, Moreno-Martínez, JA, Alemán, C, Ferreira, CA, “Transport and Antifouling Properties of Papain-Based Antifouling Coatings.” Appl. Surf. Sci., 341 75–85 (2015)

    CAS  Google Scholar 

  58. Lindholdt, A, Dam-Johansen, K, Olsen, SM, Yebra, DM, Kiil, S, “Effects of Biofouling Development on Drag Forces of Hull Coatings for Ocean-Going Ships: A Review.” J. Coat. Technol. Res, 12 415–444 (2015)

    CAS  Google Scholar 

  59. Pei, X, Ye, Q, “Development of Marine Antifouling Coatings.” In: Zhou, F (ed.) Antifouling Surfaces and Materials, pp. 135–149. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  60. Satheesh, S, Ba-Akdah, MA, Al-Sofyani, AA, “Natural Antifouling Compound Production by Microbes Associated with Marine Macroorganisms—A Review.” Electron. J. Biotechn., 21 (2015) 26–35 (2016)

    CAS  Google Scholar 

  61. Feng, K, Ni, C, Yu, L, Zhou, W, Li, X, “Synthesis and Antifouling Evaluation of Indole Derivatives.” Ecotoxicol. Environ. Saf., 182 (1) 109423 (2019)

    CAS  Google Scholar 

  62. Del Grosso, CA, McCarthy, TW, Clark, CL, Cloud, JL, Wilker, JJ, “Managing Redox Chemistry to Deter Marine Biological Adhesion.” Chem. Mater., 28 (18) 6791–6796 (2016)

    Google Scholar 

  63. Saxena, P, Joshi, Y, Rawat, K, Bisht, R, “Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms.” Indian J. Microbiol., 59 (1) 3–12 (2019)

    Google Scholar 

  64. Nir, S, Reches, M, “Bio-inspired Antifouling Approaches: The Quest Towards Non-toxic and Non-biocidal Materials.” Curr. Opin. Biotechnol., 39 (Figure 2) 48–55 (2016)

    CAS  Google Scholar 

  65. Zhou, F, Antifouling Surfaces and Materials. Springer, New York (2015)

    Google Scholar 

  66. Leonardi, AK, Ober, CK, “Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification.” Annu. Rev. Chem. Biomol. Eng., 10 (1) 241–264 (2019)

    Google Scholar 

  67. Bao, Q, Xie, L, Ohashi, H, Hosomi, M, Terada, A, “Inhibition of Agrobacterium Tumefaciens Biofilm Formation by Acylase I-Immobilized Polymer Surface Grafting of a Zwitterionic Group-Containing Polymer Brush.” Biochem. Eng. J., 152 (May) 107372 (2019)

    Google Scholar 

  68. Antunes, J, et al., “A Multi-bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides.” Mar. Drugs, 17 (2) 1–19 (2019)

    Google Scholar 

  69. Almeida, JR, Vasconcelos, V, “Natural Antifouling Compounds: Effectiveness in Preventing Invertebrate Settlement and Adhesion.” Biotechnol. Adv., 33 (3–4) 343–357 (2015)

    CAS  Google Scholar 

  70. Condren, AR, Kahl, LJ, Kritikos, G, Banzhaf, M, Dietrich, LEP, Sanchez, LM, “Biofilm Inhibitor Taurolithocholic Acid Alters Colony Morphology, Specialized Metabolism, and Virulence of Pseudomonas aeruginosa.” bioRxiv (2019). https://doi.org/10.1101/675405

  71. Prakash, S, Ahila, NK, Sri Ramkumar, V, Ravindran, J, Kannapiran, E, “Antimicrofouling Properties of Chosen Marine Plants: An Eco-friendly Approach to Restrain Marine Microfoulers.” Biocatal. Agric. Biotechnol., 4 (1) 114–121 (2015)

    Google Scholar 

  72. Pérez, M, García, M, Blustein, G, Stupak, M, “Tannin and Tannate from the Quebracho Tree: An Eco-friendly Alternative for Controlling Marine Biofouling.” Biofouling, 23 (3) 151–159 (2007)

    Google Scholar 

  73. Bacelo, HAM, Santos, SCR, Botelho, CMS, “Tannin-Based Biosorbents for Environmental Applications—A Review.” Chem. Eng. J., 303 575–587 (2016)

    CAS  Google Scholar 

  74. Pérez, M, García, M, Ruiz, D, Autino, J, Romanelli, G, Blustein, G, “Antifouling Activity of Green-Synthesized 7-Hydroxy-4-Methylcoumarin.” Mar. Environ. Res., 113 134–140 (2016)

    Google Scholar 

  75. Fusetani, N, “Antifouling Marine Natural Products.” Nat. Prod. Rep., 28 (2) 400–410 (2011)

    CAS  Google Scholar 

  76. Stupak, ME, Garcã, T, Pã, MC, “Non-toxic Alternative Compounds for Marine Antifouling Paints.” Int. Biodeterior. Biodegradation, 52 49–52 (2003)

    CAS  Google Scholar 

  77. Peres, RS, Baldissera, AF, Armelin, E, Alemán, C, Ferreira, CA, “Marine-Friendly Antifouling Coating Based on the Use of a Fatty Acid Derivative as a Pigment.” Mater. Res., 17 (3) 720–727 (2014)

    CAS  Google Scholar 

  78. Larrauri, M, Zunino, MP, Zygadlo, JA, Grosso, NR, Nepote, V, “Chemical Characterization and Antioxidant Properties of Fractions Separated from Extract of Peanut Skin Derived from Different Industrial Processes.” Ind. Crops Prod., 94 964–971 (2016)

    CAS  Google Scholar 

  79. Yakub, MK, Bello, MSGKAO, Oforghor, AO, “The Performance of 2-Nitroso-1-Naphthol Chelating Pigment in Paint Formulation with Gum Arabic and Polyvinyl Acetate as Binders, Paper I: UV–Visible Spectroscopy, Viscosity and Breaking Stress of the Paints.” African J. Sci. Technol., 8 (1) 28–38 (2007)

    Google Scholar 

  80. Bao, Z, et al, “Process for Preparing High-Purity l-Arabinose by Using Arabic Gum as Raw Material.” Patent no: US010308674B2 (2019). https://patentimages.storage.googleapis.com/88/7d/b6/80d2f275def825/US10308674.pdf

  81. Onyenekenwa, C, A Guide for the Paint Maker, 2nd ed. Welfare & Industrial Promotions (WIPRO) International, Enugu (2016)

    Google Scholar 

  82. Sanyal, B, “Organic Compounds as Corrosion Inhibitors in Different Environments—A Review.” Prog. Org. Coat., 9 (2) 165–236 (1981)

    CAS  Google Scholar 

  83. Mohammadian, M, Sahraei, R, Ghaemy, M, “Synthesis and Fabrication of Antibacterial Hydrogel Beads Based on Modified-Gum Tragacanth/Poly(vinyl alcohol)/Ag0 Highly Efficient Sorbent for Hard Water Softening.” Chemosphere, 225 259–269 (2019)

    CAS  Google Scholar 

  84. Gadkari, PV, Balaraman, M, “Catechin: Sources, Extraction and Encapsulation: A Review.” Food Bioprod. Process., 93 122–138 (2015)

    CAS  Google Scholar 

  85. Srivastava, R, Srivastava, D, “Mechanical, Chemical, and Curing Characteristics of Cardanol—Furfural-Based Novolac Resin for Application in Green Coatings.” J. Coat. Technol. Res., 12 (2) 303–311 (2015)

    CAS  Google Scholar 

  86. Callow, JA, Callow, ME, “Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings.” Nat. Commun., 2 (1) 244 (2011)

    Google Scholar 

  87. Carve, M, Scardino, A, Shimeta, J, “Effects of Surface Texture and Interrelated Properties on Marine Biofouling: A Systematic Review.” Biofouling (2019). https://doi.org/10.1080/08927014.2019.1636036

    Article  Google Scholar 

  88. da Gama, BAP, Plouguerné, E, Pereira, RC, “The Antifouling Defence Mechanisms of Marine Macroalgae.” In: Jacquot, J-P, Gadal, P, Bourgougnon, N (eds.) Advances in Botanical Research, vol. 71, pp. 413–440. Elsevier, Amsterdam (2014)

    Google Scholar 

  89. Higaki, Y, Kobayashi, M, Murakami, D, Takahara, A, “Anti-fouling Behavior of Polymer Brush Immobilized Surfaces.” Polym. J., 48 (4) 325–331 (2016)

    CAS  Google Scholar 

  90. Yandi, W, et al., “Charged Hydrophilic Polymer Brushes and Their Relevance for Understanding Marine Biofouling.” Biofouling, 32 (6) 609–625 (2016)

    CAS  Google Scholar 

  91. Gao, K, et al., “Creation of Active-Passive Integrated Mechanisms on Membrane Surfaces for Superior Antifouling and Antibacterial Properties.” J. Memb. Sci., 548 621–631 (2018)

    CAS  Google Scholar 

  92. Hibbs, MR, Hernandez-Sanchez, BA, Daniels, J, Stafslien, SJ, “Polysulfone and Polyacrylate-Based Zwitterionic Coatings for the Prevention and Easy Removal of Marine Biofouling.” Biofouling, 31 (7) 613–624 (2015)

    CAS  Google Scholar 

  93. Brzozowska, AM, et al., “Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers.” ACS Appl. Mater. Interfaces, 9 (20) 17508–17516 (2017)

    CAS  Google Scholar 

  94. Acevedo, MS, et al., “Antifouling Paints Based on Marine Natural Products from Colombian Caribbean.” Int. Biodeterior. Biodegrad., 83 97–104 (2013)

    CAS  Google Scholar 

  95. Xie, Q, Xie, Q, Pan, J, Ma, C, Zhang, G, “Biodegradable Polymer with Hydrolysis Induced Zwitterions for Antibiofouling.” ACS Appl. Mater. Interfaces, 10 (13) 11213–11220 (2018)

    CAS  Google Scholar 

  96. Mohanty, A, Misra, M, Drzal, L, Selke, S, Harte, B, Hinrichsen, G, “Natural Fibers, Biopolymers, and Biocomposites.” In: Mohanty, AK, Misra, M, Drzal, LT (eds.) Natural Fibers, Biopolymers, and Biocomposites. Taylor & Francis, London (2010)

    Google Scholar 

  97. Doppalapudi, S, Jain, A, Khan, W, Domb, AJ, “Biodegradable Polymers—An Overview.” Polym. Adv. Technol., 25 (5) 427–435 (2014)

    CAS  Google Scholar 

  98. Lochab, B, Shukla, S, Varma, IK, “Naturally Occurring Phenolic Sources: Monomers and Polymers.” RSC Adv., 4 (42) 21712–21752 (2014)

    CAS  Google Scholar 

  99. Sumrith, N, Rangappa, SM, “Biopolymers-Based Nanocomposites: Properties and Applications.” In: Sanyang, ML, Jawaid, M (eds.) Bio-based Polymers and Nanocomposites, pp. 255–272. Springer, Cham (2019)

    Google Scholar 

  100. Katarzyna, L, Grazyna, L, “Polymer Biodegradation and Biodegradable Polymers—A Review.” Polish J. Environ. Stud., 19 (2) 255–266 (2010)

    Google Scholar 

  101. Hu, Q, Luo, Y, “Polyphenol-Chitosan Conjugates: Synthesis, Characterization, and Applications.” Carbohydr. Polym., 151 624–639 (2016)

    CAS  Google Scholar 

  102. Chen, S, Ma, C, Zhang, G, “Biodegradable Polymers for Marine Antibiofouling: Poly(ε-Caprolactone)/Poly(Butylene Succinate) Blend as Controlled Release System of Organic Antifoulant.” Polymer (Guildf), 90 215–221 (2016)

    CAS  Google Scholar 

  103. Tosin, M, Pischedda, A, Degli-Innocenti, F, “Biodegradation Kinetics in Soil of a Multi-constituent Biodegradable Plastic.” Polym. Degrad. Stab., 166 213–218 (2019)

    CAS  Google Scholar 

  104. Mothé, CG, Vieira, CR, Mothé, MG, “Thermal and Surface Study of Phenolic Resin From Cashew Nut Shell Liquid Cured by Plasma Treatment.” J. Therm. Anal. Calorim., 114 (2) 821–826 (2013)

    Google Scholar 

  105. Balgude, D, Sabnis, AS, “CNSL: An Environment Friendly Alternative for the Modern Coating Industry.” J. Coat. Technol. Res., 11 (2) 169–183 (2014)

    CAS  Google Scholar 

  106. Lomonaco, D, Giuseppe, M, Mazzetto, S, “Cashew Nut Shell Liquid: A Goldfield for Functional Materials.” In: Anilkumar, P (ed.) Cashew Nut Shell Liquid: A Goldfield for Functional Materials, pp. 1–230. Springer, New York (2017)

    Google Scholar 

  107. Jaillet, F, Darroman, E, Ratsimihety, A, Auvergne, R, Boutevin, B, Caillol, S, “New Biobased Epoxy Materials from Cardanol.” Eur. J. Lipid Sci. Technol., 116 (1) 63–73 (2014)

    CAS  Google Scholar 

  108. Andrews, SGJ, Rama, V, Mythili, CV, “Synthesis and Characterization of Polymer Resins from Renewable Resource.” Int. J. Plast. Technol., 21 (2) 427–443 (2017)

    Google Scholar 

  109. Taiwo, EA, “Cashew Nut Shell Oil—A Renewable and Reliable Petrochemical Feedstock.” In: Advances in Petrochemicals, pp. 3–26 (2015). https://doi.org/10.5772/61096

    Google Scholar 

  110. Quirino, RL, Garrison, TF, Kessler, MR, “Matrices from Vegetable Oils, Cashew Nut Shell Liquid, and Other Relevant Systems for Biocomposite Applications.” Green Chemistry, 16 (4) 1700–1715 (2014)

    CAS  Google Scholar 

  111. Vedharaj, S, Vallinayagam, R, Yang, WM, Saravanan, CG, Roberts, WL, “Synthesis and Utilization of Catalytically Cracked Cashew Nut Shell Liquid in a Diesel Engine.” Exp. Therm. Fluid Sci., 70 316–324 (2016)

    CAS  Google Scholar 

  112. Telascrêa, M, Leão, AL, Ferreira, MZ, Pupo, HFF, Cherian, BM, Narine, S, “Use of a Cashew Nut Shell Liquid Resin as a Potential Replacement for Phenolic Resins in the Preparation of Panels—A Review.” Mol. Cryst. Liq. Cryst., 604 (1) 222–232 (2014)

    Google Scholar 

  113. Mahanwar, PA, Kale, DD, “Effect of Cashew Nut Shell Liquid (CNSL) on Properties of Phenolic Resins.” J. Appl. Polym. Sci., 61 (12) 2107–2111 (1996)

    CAS  Google Scholar 

  114. Ikwuagwu, C, “Design and Construction of Cashew Nut Shell Liquid Extractor.” (2008). https://doi.org/10.13140/RG.2.1.1110.0248

  115. Gedam, PH, Sampathkumaran, PS, “Cashew Nut Shell Liquid: Extraction, Chemistry and Applications.” Prog. Org. Coat., 14 (2) 115–157 (1986)

    CAS  Google Scholar 

  116. Wazarkar, K, Sabnis, A, “Cardanol Based Anhydride Curing Agent for Epoxy Coatings.” Prog. Org. Coat., 118 (August 2017) 9–21 (2018)

    CAS  Google Scholar 

  117. Edoga, MO, Fadipa, L, Edoga, RN, “Extraction of Polyphenols from Cashew Nut Shell.” Leonardo Electron. J. Pract. Technol., 5 (9) 107–112 (2006)

    Google Scholar 

  118. Kathalewar, M, Sabnis, A, D’Melo, D, “Polyurethane Coatings Prepared from CNSL Based Polyols: Synthesis, Characterization, and Properties.” Prog. Org. Coat., 77 (3) 616–626 (2014)

    CAS  Google Scholar 

  119. Sheng, C, Wenting, B, Shijian, T, Yuechuan, W, “Preparation of Cardanol-Formaldehyde Resins from Cashew Nut Shell Liquid for the Reinforcement of Natural Rubber.” Appl. Polym. Sci., 104 1997–2002 (2008)

    Google Scholar 

  120. Ugoamadi, CC, “Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester Resin in Composite Development.” Niger. J. Technol. Dev., 10 (2) 17–21 (2013)

    Google Scholar 

  121. Lubi, MC, Thachil, ET, “Cashew Nut Shell Liquid (CNSL)—A Versatile Monomer for Polymer Synthesis.” Des. Monomers Polym., 3 (2) 123–153 (2000)

    CAS  Google Scholar 

  122. Sharma, SK, et al., “Chemical Characterization and Antioxidant Properties of Fractions Separated from Extract of Peanut Skin Derived from Different Industrial Processes.” J. Appl. Polym. Sci., 73 (2) 1–10 (2015)

    Google Scholar 

  123. Tawade, BV, Salunke, JK, Sane, PS, Wadgaonkar, PP, “Processable Aromatic Polyesters Based on Bisphenol Derived from Cashew Nut Shell Liquid: Synthesis and Characterization.” J. Polym. Res., 21 (12) 1–10 (2014)

    CAS  Google Scholar 

  124. Mubofu, EB, “From Cashew Nut Shell Wastes to High Value Chemicals.” Pure Appl. Chem., 88 (1–2) 17–27 (2016)

    CAS  Google Scholar 

  125. Sahoo, SK, Swain, SK, Mohapatra, DK, Nayak, PL, Lenka, S, “Polymers from Renewable Resources, V. Synthesis and Characterization of Thermosetting Resins Derived from Cashew Nut Shell Liquid (CNSL)—Furfural-Substituted Aromatic Compounds.” J. Appl. Polym. Sci., 54 1413–1421 (1994)

    Google Scholar 

  126. Gandhi, T, Patel, M, Dholakiya, BK, “Studies on Effect of Various Solvents on Extraction of Cashew Nut Shell Liquid (CNSL) and Isolation of Major Phenolic Constituents From Extracted CNSL.” J. Nat. Prod. Plant Resour., 2 (1) 135–142 (2012)

    CAS  Google Scholar 

  127. Gandhi, TS, Dholakiya, BZ, Patel, MR, “Extraction Protocol for Isolation of CNSL by Using Protic and Aprotic Solvents from Cashew Nut and Study of Their Physico-Chemical Parameter.” Polish J. Chem. Technol., 15 (4) 24–27 (2013)

    CAS  Google Scholar 

  128. Li, C, Yu, H, Li, F, Zhang, Z, Huang, J, Wang, J, “Physicochemical Properties of Series of Cardanol Polyoxyethylene Ether Carboxylates with Different Ethoxylation Unit at the Interface.” J. Dispers. Sci. Technol., 40 (1) 9–16 (2018)

    Google Scholar 

  129. Keetasombat, K, Soykeabkaew, N, “Coating Based on Cashew Nut Shell Liquid Resin.” 26th Annu. Meet. Thai Soc. Biotechnol. Int. Conf. pp. 145–153, 2014

  130. Jaillet, F, Nouailhas, H, Boutevin, B, Caillol, S, “Synthesis of Novel Bio-based Vinyl Ester from Dicyclopentadiene Prepolymer, Cashew Nut Shell Liquid, and Soybean Oil.” Eur. J. Lipid Sci. Technol., 118 (9) 1336–1349 (2016)

    CAS  Google Scholar 

  131. Kanehashi, S, Masuda, R, Yokoyama, K, Kanamoto, T, Nakashima, H, Miyakoshi, T, “Development of a Cashew Nut Shell Liquid (CNSL)-Based Polymer for Antibacterial Activity.” J. Appl. Polym. Sci., 132 (45) 1–9 (2015)

    Google Scholar 

  132. Campaner, P, D’Amico, D, Longo, L, Stifani, C, Tarzia, A, “Cardanol-Based Novolac Resins as Curing Agents of Epoxy Resins.” Polym. Polym. Compos., 114 3585–3591 (2009)

    CAS  Google Scholar 

  133. Aggarwal, LK, Thapliyal, PC, Karade, SR, “Anticorrosive Properties of the Epoxy-Cardanol Resin Based Paints.” Prog. Org. Coat., 59 (1) 76–80 (2007)

    CAS  Google Scholar 

  134. Pathak, SK, Rao, BS, “Structural Effect of Phenalkamines on Adhesive Viscoelastic and Thermal Properties of Epoxy Networks.” J. Appl. Polym. Sci., 102 4741–4748 (2006)

    CAS  Google Scholar 

  135. Kim, Y, An Suk, E, Park Young, S, Song Keun, B, “Enzymatic Epoxidation and Polymerization of Cardanol Obtained from a Renewable Resource and Curing of Epoxide-Containing Polycardanol.” J. Molecular Catal. B Enzym., 45 39–44 (2007)

    CAS  Google Scholar 

  136. Tan, MT, Nieu, HN, “Carbon Fiber Cardanol-Epoxy Composites.” J. Appl. Polym. Sci., 61 133–137 (1996)

    CAS  Google Scholar 

  137. Bhunia, HP, Nandoa, GB, Chakia, TK, Nando, GB, “Synthesis and Characterization of Polymers from Cashewnut Shell Liquid (CNSL), A Renewable Resource II. Synthesis of Polyurethanes.” Eur. Polym. J., 35 (8) 1381–1391 (1999)

    CAS  Google Scholar 

  138. Mukherjee, S, Ghosh, M, “Performance Evaluation and Biodegradation Study of Polyvinyl Chloride Films with Castor Oil-based Plasticizer.” J. Am. Oil Chem. Soc. (2019). https://doi.org/10.1002/aocs.12294

    Article  Google Scholar 

  139. Lu, Y, Larock, RC, “Corn Oil-Based Composites Reinforced with Continuous Glass Fibers: Fabrication and Properties.” J. Appl. Polym. Sci., 102 (4) 3345–3353 (2006)

    CAS  Google Scholar 

  140. Larock, RC, Natural Oil-Based Composites Reinforced with Natural Fillers, and Conjugation/Isomerization of Carbon–Carbon Double Bonds. Iowa State University, Iowa (2011)

    Google Scholar 

  141. Dutta, N, Karak, N, Dolui, SK, “Synthesis and Characterization of Polyester Resins Based on Nahar Seed Oil.” Prog. Org. Coat., 49 (2) 146–152 (2004)

    CAS  Google Scholar 

  142. Flores, S, Flores, A, Calderón, C, Obregón, D, “Synthesis and Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil-Based Alkyd Resin.” Prog. Org. Coat., 136 (1) 105289 (2019)

    CAS  Google Scholar 

  143. Vanholme, R, De Meester, B, Ralph, J, Boerjan, W, “Lignin Biosynthesis and Its Integration into Metabolism.” Curr. Opin. Biotechnol., 56 (Table 1) 230–239 (2019)

    CAS  Google Scholar 

  144. Rautiainen, S, Di Francesco, D, Katea, SN, Westin, G, Tungasmita, DN, Samec, JSM, “Lignin Valorization by Cobalt-Catalyzed Fractionation of Lignocellulose to Yield Monophenolic Compounds.” ChemSusChem, 12 (2) 404–408 (2018)

    Google Scholar 

  145. Vaithilingam, S, Jayanthi, J, Muthukaruppan, A, “Synthesis and Characterization of Cardanol Based Fluorescent Composite for Optoelectronic and Antimicrobial Applications.” Polymer (Guildf)., 108 449–461 (2017)

    CAS  Google Scholar 

  146. Rahim, AA, Rocca, E, Steinmetz, J, Kassim, MJ, Adnan, R, Sani Ibrahim, M, “Mangrove Tannins and Their Flavanoid Monomers as Alternative Steel Corrosion Inhibitors in Acidic Medium.” Corros. Sci., 49 (2) 402–417 (2007)

    CAS  Google Scholar 

  147. Peres, RS, Armelin, E, Alemán, C, Ferreira, CA, “Modified Tannin Extracted from Black Wattle Tree as an Environmentally Friendly Antifouling Pigment.” Ind. Crops Prod., 65 506–514 (2015)

    CAS  Google Scholar 

  148. Altemimi, A, Lakhssassi, N, Baharlouei, A, Watson, D, Lightfoot, D, “Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts.” Plants, 6 (4) 42 (2017)

    Google Scholar 

  149. Vladimir-Knežević, S, Blažeković, B, Štefan, MB, Babac, M, Plant Polyphenols as Antioxidants Influencing the Human Health. In: Rao, V (ed.) Phytochemicals as NutraceuticalsGlobal Approaches to Their Role in Nutrition and Health, pp. 155–180, ISBN: 978-953-51-0203-8, China: InTech (2012)

  150. Hutzinger, O, Antifouling Paints Biocides, 5th ed. Springer, Berlin (2006)

    Google Scholar 

  151. Gutner-Hoch, E, et al., “Antimacrofouling Efficacy of Innovative Inorganic Nanomaterials Loaded with Booster Biocides.” J. Mar. Sci. Eng., 6 (1) 6 (2018)

    Google Scholar 

  152. de Oliveira, M, et al., “Disruptive Effect of Organotin on Thyroid Gland Function Might Contribute to Hypothyroidism.” Int. J. Endocrinol., (2019). https://doi.org/10.1155/2019/7396716

    Article  Google Scholar 

  153. Dai, G, Xie, Q, Ma, C, Zhang, G, “Biodegradable Poly(Ester-co-Acrylate) with Antifoulant Pendant Groups for Marine Anti-biofouling.” ACS Appl. Mater. Interfaces, 11 (12) 11947–11953 (2019)

    CAS  Google Scholar 

  154. Faÿ, F, Gouessan, M, Linossier, I, Réhel, K, “Additives for Efficient Biodegradable Antifouling Paints.” J. Mol. Sci., Int. (2019). https://doi.org/10.3390/ijms20020361

    Book  Google Scholar 

  155. Vesco, S, Aversa, C, Puopolo, M, Barletta, M, “Advances in Design and Manufacturing of Environmentally Friendly and Biocide-Free Antifouling/Foul-Release Coatings: Replacement of Fluorinate Species.” J. Coat. Technol. Res., 16 (3) 661–680 (2019)

    CAS  Google Scholar 

  156. Al-Naamani, L, Dobretsov, S, Dutta, J, Burgess, JG, “Chitosan-Zinc Oxide Nanocomposite Coatings for the Prevention of Marine Biofouling.” Chemosphere, 168 408–417 (2017)

    CAS  Google Scholar 

  157. Verma, C, Ebenso, EE, Quraishi, MA, “Ionic Liquids as Green and Sustainable Corrosion Inhibitors for Metals and Alloys: An Overview.” J. Mol. Liq., 233 403–414 (2017)

    CAS  Google Scholar 

  158. Haugh, H, Kim, A, Bansal, P, “No Time Like the Present: How a Present Time Perspective Can Foster Sustainable Development.” Acad. Manag. J., 62 (2) 607–634 (2019)

    Google Scholar 

Download references

Funding

Funding was provided by World Bank Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampson Kofi Kyei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyei, S.K., Darko, G. & Akaranta, O. Chemistry and application of emerging ecofriendly antifouling paints: a review. J Coat Technol Res 17, 315–332 (2020). https://doi.org/10.1007/s11998-019-00294-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00294-3

Keywords

Navigation