Skip to main content

Antifouling Based on Biocides: From Toxic to Green

  • Chapter
  • First Online:
Antifouling Surfaces and Materials

Abstract

Antifouling based on biocides is the most important method preventing biofoulings in modern maritime industries and boating communities. Most antifouling paints, such as the famous but already banned organotin containing self-polishing coatings, belong to this category. Decades of development of the technology has resulted in a variety of biocides, organic matrixes, and paint systems. However, with increasing environmental concerns, the most challenging for these coatings is preventing fouling settlement effectively and meanwhile fulfilling regulations imposed by the International Marine Organization (IMO) to stop environmental damages. More and more efforts, including developing nontoxic or green biocides, new organic matrixes and advanced embedding and encapsulating technologies, and learning from nature, have been addressing the challenge. This chapter seeks to combine all these topics: the biocides from toxic to green, the organic matrix and paint system, the antifouling effects and the environmental impacts, and to draw a developing trend map for biofouling based on biocides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  Google Scholar 

  2. Evans SM, Leksono T, Mckinnell PD (1995) Tributyltin pollution: a diminishing problem following legislation limiting the use of TBT-based anti-fouling paints. Mar Pollut Bull 30:14–21

    Article  Google Scholar 

  3. Ruiz JM, Bachelet G, Caumette P, Donard OFX (1996) Three decades of tributyltin in the coastal environment with emphasis on arcachon bay. Environ Pollut 93:195–203

    Article  Google Scholar 

  4. Champ MA (2000) A review of organotin regulatory strategies, pending actions, related costs and benefit. Sci Total Environ 258:21–71

    Article  Google Scholar 

  5. Xu Y, He HP, Schulz S, Liu X, Fusetani N, Xiong HR, Xiao X, Qian PY (2010) Potent antifouling compounds produced by marine Streptomyces. Bioresour Technol 101:1331–1336

    Article  Google Scholar 

  6. Evans SM (1999) TBT or not TBT? That is the question. Biofouling 14:117–129

    Article  Google Scholar 

  7. Sousa A, G´enio L, Mendo S, Barrosoi C (2005) Comparison of the acute toxicity of tributyltin and copper to veliger larvae of Nassarius reticulatus (L.). Appl Organometal Chem 19:324–328

    Article  Google Scholar 

  8. Mailhot G, Brand N, Astruc M, Bolte M (2002) Photoinduced degradation by iron (III): removal of triphenyltin chloride from water. Appl Organometal Chem 16:27–33

    Article  Google Scholar 

  9. Konstantinou IK (2006) Antifouling paint biocides. In: Omae I (ed) Chemistry and fate of organotin antifouling biocides in the environment, 2nd edn. Springer, Berlin, p 17–50

    Chapter  Google Scholar 

  10. Gadd GM (2000) Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258:119–127

    Article  Google Scholar 

  11. Huggett RJ, Unger MA, Seligman PF, Valkirs AO (1992) Assessing and managing the environmental risks. Environ Sci Technol 26:232–237

    Article  Google Scholar 

  12. Qian PY, Chen LG, Xu Y (2013) Mini-review: molecular mechanisms of antifouling compounds. Biofouling 29:381–400

    Article  Google Scholar 

  13. Dowson PH, Bubb JM, Lester JN (1993) Temporal distribution of organotins in the aquatic environment: five years after the 1987 UK retail ban on TBT based antifouling paints. Mar Pollut Bull 26:487–494

    Article  Google Scholar 

  14. Minchin D, Oehlmann J, Duggan CB, Stroben E, Keatinge M (1995) Marine TBT antifouling contamination in Ireland, following legislation in 1987. Mar Pollut Bull 30:633–639

    Article  Google Scholar 

  15. Sapozhnikova Y, Wirth E, Schiff K, Fuiton M (2013) Antifouling biocides in water and sediments from California marinas. Mar Pollut Bull 69:189–194

    Article  Google Scholar 

  16. Voulvoulis N, Scrimshaw MD, Lester JN (1999) Alternative antifouling biocides. Appl Organometal Chem 13:135–143

    Article  Google Scholar 

  17. Omae I (2003) General aspects of tin-free antifouling paints. Chem Rev 103:3431–3448

    Article  Google Scholar 

  18. Almeidaa E, Diamantino TC, Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coat 59:2–20

    Article  Google Scholar 

  19. Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26:73–88

    Article  Google Scholar 

  20. Yonehara Y, Yamashita H, Kawamura C, Itoh K (2001) A new antifouling paint based on a zinc acrylate copolymer. Prog Org Coat 42:150–158

    Article  Google Scholar 

  21. Bellas J (2005) Toxicity assessment of the antifouling compound zinc pyrithione using early developmental stages of the ascidian Ciona intestinalis. Biofouling 21:289–296

    Article  Google Scholar 

  22. Bellas J, Granmo A, Beiras R (2005) Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis). Mar Pollut Bull 50:1382–1385

    Article  Google Scholar 

  23. Bellotti N, Deya C, Amo B, Romagnoli R (2010) Antifouling paints with zinc “Tannate”. Ind Eng Chem Res 49:3386–3390

    Article  Google Scholar 

  24. Mohr S, Berghahn R, Mailahn W, Schmeiediche R, Feibicke M, Schmidt R (2009) Toxic and accumulative potential of the antifouling biocide and TBT successor Irgarol on freshwater macrophytes: a pond mesocosm study. Environ Sci Technol 43:6838–6843

    Article  Google Scholar 

  25. Schoknecht U, Gruycheva J, Mathies H, Bergmann H, Burkhardt M (2009) Leaching of biocides used in facade coatings under laboratory test conditions. Environ Sci Technol 43:9321–9328

    Article  Google Scholar 

  26. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ram´ırez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  Google Scholar 

  27. Qu F, Xu HY, Xiong YH, Lai WH, Wei H (2010) Research progress in bactericidal mechanisms of nano-silver. Food Sci 31:420–424

    Google Scholar 

  28. Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Advan Technol 18:562–568

    Article  Google Scholar 

  29. Dai JH, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501

    Article  Google Scholar 

  30. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  Google Scholar 

  31. Wang RM, Wang BY, He YF, Lv WH, Wang JF (2009) Preparation of composited nano-TiO2 and its application on antimicrobial and self-cleaning coatings. Polym Advan Technol 21:331–336

    Article  Google Scholar 

  32. Fu GF, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  Google Scholar 

  33. Banerjee I, Pangule RC, Kane RS (2010) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    Article  Google Scholar 

  34. Cao ZQ, Jiang SY (2012) Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 7:404–413

    Article  Google Scholar 

  35. Hucknall A, Rangarajan S, Chilkoti A (2009) In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv Mater 21:2441–2446

    Article  Google Scholar 

  36. Jeon SI, Lee JH, Andrade JD, Gennes PG (1990) Protein-surface interactions in the presence of polyethylene oxide. J Colloid Interf Sci 142:149–158

    Article  Google Scholar 

  37. Kim HS, Ham HO, Son YJ, Messersmith PB, Yoo HS (2013) Electrospun catechol-modified poly(ethyleneglycol) nanofibrous mesh for anti-fouling properties. J Phys Chem B 1:3940–3949

    Google Scholar 

  38. Gon S, Kumar KN, NuÌsslein K, Santore MM (2012) How bacteria adhere to brushy PEG surfaces: clinging to flaws and compressing the brush. Macromolecules 45:8373–8381

    Article  Google Scholar 

  39. Zhou F, Liang YM, Liu WM (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38:2590–2599

    Article  Google Scholar 

  40. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  Google Scholar 

  41. Dobbs W, Heinrich B, Bourgogne C, Donnio B, Terazzi E, Bonnet ME, Stock F, Erbacher P, Bolcato-Bellemin AL, Douce L (2009) Mesomorphic imidazolium salts: new vectors for efficient siRNA transfection. J Am Chem Soc 131:13338–13346

    Article  Google Scholar 

  42. Ye Q, Gao TT, Wan F, Yu B, Pei XW, Zhou F, Xue QJ (2012) Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications. J Mater Chem 22:13123–13128

    Article  Google Scholar 

  43. Manna U, Carter MCD, Lynn DM (2013) “Shrink-to-fit” superhydrophobicity: thermally-induced microscale wrinkling of thin hydrophobic multilayers fabricated on flexible shrink-wrap substrates. Adv Mater 25:3085–3089

    Article  Google Scholar 

  44. Latała A, Nedzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem 11:580–588

    Article  Google Scholar 

  45. Zhang Z, Chen SF, Jiang SY (2006) Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7:3311–3315

    Article  Google Scholar 

  46. Zhang Z, Chen SF, Chang Y, Jiang SY (2006) Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 110:10799–10804

    Article  Google Scholar 

  47. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244–253

    Article  Google Scholar 

  48. West SL, Salvage JP, Lobb EJ, Armes SP, Billingham NC, Lewis AL, Hanlon GW, Lloyd AW (2004) The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 25:1195–1204

    Article  Google Scholar 

  49. Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932

    Article  Google Scholar 

  50. Yin HY, Akasaki T, Sun TL, Nakajima T, Kurokawa T, Nonoyama T, Taira T, Saruwatarie Y, Gong JP (2013) Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. J Mater Chem B 1:3685–3693

    Article  Google Scholar 

  51. Aldred N, Li GZ, Gao Y, Clare AS, Jiang SY (2010) Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. Biofouling 26:673–683

    Article  Google Scholar 

  52. Gui AL, Luais E, Peterson JR, Gooding JJ (2013) Zwitterionic phenyl layers: finally, stable, anti-biofouling coatings that do not passivate electrodes. ACS Appl Mater Interfaces 5:4827–4835

    Article  Google Scholar 

  53. Liu YW, Leng C, Chisholm B, Stafslien S, Majumdar P, Chen Z (2013) Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications. Langmuir 29:2897–2905

    Article  Google Scholar 

  54. Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY (2008) A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 24:5453–5458

    Article  Google Scholar 

  55. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21: 94–104

    Article  Google Scholar 

  56. Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234

    Article  Google Scholar 

  57. Feng XQ, Li XF, Yang S, Wang TP (2009) Current research on anti-microbial mechanisms related influencing factors and applications of chitosan. China Brewing 202:19–23

    Google Scholar 

  58. Kim JY, Kim SK (2006) Chitosan derivatives killed bacteria by disrupting the outer. J Agric Food Chem 54:6629–6633

    Article  Google Scholar 

  59. Kumar R, Isloor AM, Ismail AF, Rashid SA, Matsuura T (2013) Polysulfone-chitosan blend ultrafiltration membranes: preparation, characterization, permeation and antifouling properties. Rsc Adv 3:7855–7861

    Article  Google Scholar 

  60. Angarano MB, McMahon RF, Hawkins DL, Schetz JA (2007) Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Biofouling 23:295–305

    Article  Google Scholar 

  61. Peng BX, Wang JL, Peng ZH, Zhou SZ, Wang FQ, Ji YL, Ye ZJ, Zhou XF, Lin T, Zhang XB (2011) Studies on the synthesis, pungency and anti-biofouling performance of capsaicin analogues. Sci China Chem 55:435–442

    Article  Google Scholar 

  62. Cope WG, Bartsch MR, Marking LL (1997) Efficacy of candidate chemicals for preventing attachment of zebra mussels (Dreissena polymorpha). Environ Toxicol Chem 16:1930–1934

    Article  Google Scholar 

  63. Olsen SM, Pedersen LT, Laursen MH, Kiil S, Dam-Johansen K (2007) Enzyme-based antifouling coatings: a review. Biofouling 23:369–383

    Article  Google Scholar 

  64. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112:4347–4390

    Article  Google Scholar 

  65. Zhou XJ, Zhang Z, Xu Y, Jin CL, He HP, Hao XJ, Qian PY (2009) Flavone and isoflavone derivatives of terrestrial plants as larval settlement inhibitors of the barnacle Balanus amphitrite. Biofouling 25:69–76

    Article  Google Scholar 

  66. Kato T, Shizuri Y, Izumida H, Yokoyama A, Endo M (1995) Styloguanidines, new chitinase inhibitors from the marine sponge stylotella aurantium. Tetrahedron Lett 36:2133–2136

    Article  Google Scholar 

  67. Zhang YF, Zhang HM, He LS, Liu CD, Xu Y, Qian PY (2012) Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. ACS Chem Biol 7:1049–1058

    Article  Google Scholar 

  68. Novick SJ, Dordick JS (2002) Protein-containing hydrophobic coatings and film. Biomaterials 23:441–448

    Article  Google Scholar 

  69. Xu Y, Li HL, Li XC, Xiao X, Qian PY (2009) Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete Hydroides elegans. Mar Biotechnol 11:495–504

    Article  Google Scholar 

  70. Yang LH, Lee OO, Jin T, Li XC, Qian PY (2006) Antifouling properties of 10β-formamidokalihinol-A and kalihinol A isolated from the marine sponge Acanthella cavernosa. Biofouling 22:23–32

    Article  Google Scholar 

  71. Gui TJ, Yu XY (2010) Existing state and development trend of binder resin for marine antifouling coatings. China Coatings 10:7–11

    Google Scholar 

  72. Railkin AT (2004) Marine biofouling: colonization processes and defenses. In: Railkin AT (ed) Protection of man-made structures against biofouling, 9th edn. Chemical Rubber Company (CRC), London, p 179–194

    Google Scholar 

  73. Yan DZ, Jia CG (2002) Technology development and application of antifouling coating. Chem Technol Mark 25(12):21–24

    Google Scholar 

  74. Yebra DM, Kiil S, Weinell CE, Dam-Johansen K (2006) Presence and effects of marine microbial biofilms on biocide-based antifouling paints. Biofouling 22:33–41

    Article  Google Scholar 

  75. Monfared H, Sharif F, Kasiriha SM (2008) Simulation and development of tin-free antifouling self-polishing coatings. Macromol Symp 274:109–115

    Article  Google Scholar 

  76. Thouvenin M, Peron JJ, Charreteur C, Guerin P, Langlois JY, Vallee-Rehel K (2002) A study of the biocide release from antifouling paints. Prog Org Coat 44:75–83

    Article  Google Scholar 

  77. Cima F, Ballarin L (2008) Effects of anitfouling paints alternative to organotin-based ones on macrofouling biocoenosis of hard substrates in the Lagoon of Venice. Fresen Environ Bull 17:1901–1908

    Google Scholar 

  78. Xiao DS, Yuan YC, Rong MZ, Zhang MQ (2009) Self-healing epoxy based on cationic chain polymerization. Polymer 50:2967–2975

    Article  Google Scholar 

  79. Fluri DA, Kemmer C, Daoud-El Baba M, Fussenegger M (2008) A novel system for trigger-controlled drug release from polymer capsules. J Control Release 131:211–219

    Article  Google Scholar 

  80. Kooiman K, Bohmer MR, Emmer M, Vos HJ, Chlon C, Shi WT, Hall CS, de Winter SH, Schroen K, Versluis M, de Jong N, van Wamel A (2009) Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. J Control Release 133:109–118

    Article  Google Scholar 

  81. Mao Z, Ma L, Gao C, Shen J (2005) Preformed microcapsules for loading and sustained release of ciprofloxacin hydrochloride. J Control Release 104:193–202

    Article  Google Scholar 

  82. Cui J, Yan Y, Such GK, Liang K, Ochs CJ, Postma A, Caruso F (2012) Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules 13:2225–2228

    Article  Google Scholar 

  83. Liu QZ, Yu B, Ye W, Zhou F (2011) Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol Biosci 11:1227–1234

    Article  Google Scholar 

  84. Zheng JN, Xie HG, Yu WT, Tan MQ, Gong FQ, Liu XD, Wang F, Lv GJ, Liu WF, Zheng GH, Yang Y, Xie WY, Ma XJ (2012) Enhancement of surface graft density of MPEG on alginate/chitosan hydrogel microcapsules for protein repellency. Langmuir 28:13261–13273

    Article  Google Scholar 

  85. Liu T, Song X, Guo Z, Dong Y, Guo N, Chang X (2014) Prolonged antibacterial effect of silver nanocomposites with different structures. Colloid Surface B 116:793–796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, W., Wang, X. (2015). Antifouling Based on Biocides: From Toxic to Green. In: Zhou, F. (eds) Antifouling Surfaces and Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45204-2_5

Download citation

Publish with us

Policies and ethics