Skip to main content

Advertisement

Log in

Review on formation of biofouling in the marine environment and functionalization of new marine antifouling coatings

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the development of society, industry, agriculture, and other production activities are changing with each passing day. The primary mode of transportation in international trade is by ship. Due to the complex environment and biodiversity of the sea, ship surfaces are often corroded due to microorganisms, algae, shellfish, and other factors. The hydraulic conditions during the operation of the ship are also affected, increasing energy consumption. Thus, ships need to stop regularly for surface cleaning to prevent greater losses, but there are economic losses and human and material resource consumption that occur during these shutdown periods. To better solve the problem of corrosion, ship surfaces can be treated by antifouling coatings. This review discusses current popular and new marine antifouling coatings from the aspects of biofouling: microbial biofouling, conditioned film biofouling, algae attachment biofouling, shellfish attachment biofouling, and marine environmental impacts. This review also discusses the characteristics, formation mechanisms, and preparation processes of nanocomposite coatings, amphiphilic antifouling coatings, photocatalytic coatings, self-healing antifouling coatings, and self-polishing coatings. The new marine antifouling coatings are compared with traditional coatings in terms of hydraulic properties, such as water contact angle and antifouling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Brodie RT, Ruckelshaus M, Swilling M, Allison EH, Osterblom H, Gelcich S, Mbatha P (2020) A transition to sustainable ocean governance. Nat Commun 11:1–14. https://doi.org/10.1038/s41467-020-17410-2

    Article  CAS  Google Scholar 

  2. Shields MA, Woolf DK, Grist EPM, Kerr SA, Jackson AC, Harris RE, Bell MC, Beharie R et al (2011) Marine renewable energy: the ecological implications of altering the hydrodynamics of the marine environment. Ocean Coast Manag 54:2–9. https://doi.org/10.1016/j.ocecoaman.2010.10.036

    Article  Google Scholar 

  3. Qu QZ, Tsai SB, Tang MX, Xu CJ, Dong WW (2016) Marine ecological environment management based on ecological compensation mechanisms. Sustainability-Basel 8:1267–1277. https://doi.org/10.3390/su8121267

    Article  Google Scholar 

  4. Han C, Qu ZG (2021) A methodology for removing biofouling of the hull based on ultrasonic guided waves. J Phys Conf Ser 2031:012006–012013. https://doi.org/10.1088/1742-6596/2031/1/012006

    Article  Google Scholar 

  5. Song CH, Cui WC (2020) Review of underwater ship hull cleaning technologies. J Mar Sci Appl 19:415–429. https://doi.org/10.1007/s11804-020-00157-z

    Article  Google Scholar 

  6. Mineur F, Johnson MP, Maggs CA, Stegenga H (2006) Hull fouling on commercial ships as a vector of macroalgal introduction. Mar Biol 151:1299–1307. https://doi.org/10.1007/s00227-006-0567-y

    Article  Google Scholar 

  7. Imchen T (2018) Marine macroalgae: prospective hitchhikers of ship ballast. ASEAN J Sci Technol Dev 35:43–47. https://doi.org/10.29037/ajstd.472

    Article  Google Scholar 

  8. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. https://doi.org/10.1002/adma.201001215

    Article  CAS  Google Scholar 

  9. Pei X, Ye Q (2015) Development of marine antifouling coatings. Antifouling Surfaces Mater. https://doi.org/10.1007/978-3-662-45204-2_6

    Article  Google Scholar 

  10. Rascio VJ (2000) Antifouling coatings: where do we go from here. Corros Rev 18:133–154. https://doi.org/10.1515/CORRREV.2000.18.2-3.133

    Article  CAS  Google Scholar 

  11. Howell D, Behrends B (2006) A methodology for evaluating biocide release rate, surface roughness and leach layer formation in a TBT-free, self-polishing antifouling coating. Biofouling 22:303–315. https://doi.org/10.1080/08927010600924304

    Article  CAS  Google Scholar 

  12. Tian JJ, Xu KW, Hu JH, Zhang SJ, Cao GQ, Shao GS (2021) Durable self-polishing antifouling Cu–Ti coating by a micron-scale Cu/Ti laminated microstructure design. J Mater Sci Technol 79:62–74. https://doi.org/10.1016/j.jmst.2020.11.038

    Article  CAS  Google Scholar 

  13. Coneski PN, Weise NK, Fulmer PA, Wynne JH (2013) Development and evaluation of self-polishing urethane coatings with tethered quaternary ammonium biocides. Prog Org Coat 76:1376–1386. https://doi.org/10.1016/j.porgcoat.2013.04.012

    Article  CAS  Google Scholar 

  14. Bressy C, Margaillan A, Faÿ F, Linossier I, Réhel K (2009) Tin-free self-polishing marine antifouling coatings. Adv Marine Antifouling Coat Technol. https://doi.org/10.1533/9781845696313.3.445

    Article  Google Scholar 

  15. Jin HC, Wang JF, Tian LM, Gao MY, Zhao J, Ren LQ (2022) Recent advances in emerging integrated antifouling and anticorrosion coatings. Mater Des 213:110307–110326. https://doi.org/10.1016/j.matdes.2021.110307

    Article  CAS  Google Scholar 

  16. Gu Y, Yu L, Mou J, Wu D, Xu M, Zhou P, Ren Y (2020) Research strategies to develop environmentally friendly marine antifouling coatings. Mar Drugs 18:371–393. https://doi.org/10.3390/md18070371

    Article  CAS  Google Scholar 

  17. Pascal B, Mariëlle W, Corné R, Zeger V (2012) A brief review of environmentally benign antifouling and foul-release coatings for marine applications. J Coat Technol Res 10:29–36. https://doi.org/10.1007/s11998-012-9456-0

    Article  CAS  Google Scholar 

  18. Xie C, Guo H, Zhao W, Zhang L (2020) Environmentally friendly marine antifouling coating based on a synergistic strategy. Langmuir 36:2396–2402. https://doi.org/10.1021/acs.langmuir.9b03764

    Article  CAS  Google Scholar 

  19. Yebra DM, Kiil S, Dam JK (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001

    Article  CAS  Google Scholar 

  20. He C, Gu Y, Zhang J, Ma L, Yan M, Mou J, Ren Y (2022) Preparation and modification technology analysis of ionic polymer-metal composites (IPMCs). Int J Mol Sci 23:3522–3540. https://doi.org/10.3390/ijms23073522

    Article  CAS  Google Scholar 

  21. Yan H, Wu QS, Yu CM, Zhao TY, Liu MJ (2020) Recent progress of biomimetic antifouling surfaces in marine. Adv Mater Interfaces 7:2000966–2000984. https://doi.org/10.1002/admi.202000966

    Article  Google Scholar 

  22. Liu MY, Li SN, Wang H, Jiang RJ, Zhou X (2021) Research progress of environmentally friendly marine antifouling coatings. Polym Chem 12:3702–3720. https://doi.org/10.1039/d1py00512j

    Article  CAS  Google Scholar 

  23. Gu J, Li L, Huang DC, Jiang L, Liu L, Li FY, Pang AM, Guo X et al (2019) In situ synthesis of Graphene@cuprous oxide nanocomposite incorporated marine antifouling coating with elevated antifouling performance. Open J Org Polym Mater 09:47–62. https://doi.org/10.4236/ojopm.2019.93003

    Article  CAS  Google Scholar 

  24. Selim MS, Yang H, Wang FQ, Fatthallah NA, Huang Y, Kuga S (2019) Silicone/ZnO nanorod composite coating as a marine antifouling surface. Appl Surf Sci 466:40–50. https://doi.org/10.1016/j.apsusc.2018.10.004

    Article  CAS  Google Scholar 

  25. Gomathi SG, Sathya S, Sriyutha MP, Das A, Pandiyan R, Venugopalan VP, Doble M (2015) Polydimethyl siloxane nanocomposites: their antifouling efficacy in vitro and in marine conditions. Int Biodeterior Biodegradation 104:307–314. https://doi.org/10.1016/j.ibiod.2015.05.022

    Article  CAS  Google Scholar 

  26. Gu YQ, Zhang JJ, Yu SW, Mou CQ, Li Z, He CD, Wu DH, Mou JG et al (2022) Unsteady numerical simulation method of hydrofoil surface cavitation. Int J Mech Sci 228:107490–107504. https://doi.org/10.1016/j.ijmecsci.2022.107490

    Article  Google Scholar 

  27. Li Y, Ning C (2019) Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioact Mater 4:189–195. https://doi.org/10.1016/j.bioactmat.2019.04.003

    Article  Google Scholar 

  28. Liu HW, Gu TY, Asif M, Zhang GA, Liu HF (2017) The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria. Corros Sci 114:102–111. https://doi.org/10.1016/j.corsci.2016.10.025

    Article  CAS  Google Scholar 

  29. Dong ZH, Liu T, Liu HF (2011) Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. Biofouling 27:487–495. https://doi.org/10.1080/08927014.2011.584369

    Article  CAS  Google Scholar 

  30. Belkaid S, Ladjouzi MA, Hamdani S (2010) Effect of biofilm on naval steel corrosion in natural seawater. J Solid State Electrochem 15:525–537. https://doi.org/10.1007/s10008-010-1118-5

    Article  CAS  Google Scholar 

  31. Yuan SJ, Liang B, Zhao Y, Pehkonen SO (2013) Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria. Corros Sci 74:353–366. https://doi.org/10.1016/j.corsci.2013.04.058

    Article  CAS  Google Scholar 

  32. Lenhart TR, Duncan KE, Beech IB, Sunner JA, Smith W, Bonifay V, Biri B, Suflita JM (2014) Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling 30:823–835. https://doi.org/10.1080/08927014.2014.931379

    Article  Google Scholar 

  33. Jain A, Bhosle NB (2009) Biochemical composition of the marine conditioning film: implications for bacterial adhesion. Biofouling 25:13–19. https://doi.org/10.1080/08927010802411969

    Article  CAS  Google Scholar 

  34. Garg A, Jain A, Bhosle NB (2009) Chemical characterization of a marine conditioning film. Int Biodeterior Biodegrad 63:7–11. https://doi.org/10.1016/j.ibiod.2008.05.004

    Article  CAS  Google Scholar 

  35. Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23:331–341. https://doi.org/10.1080/08927010701461974

    Article  Google Scholar 

  36. Long L, Wang R, Chiang HY, Ding W, Li YX, Chen F, Qian PY (2021) Discovery of antibiofilm activity of elasnin against marine biofilms and its application in the marine antifouling coatings. Mar Drugs 19:19–31. https://doi.org/10.3390/md19010019

    Article  CAS  Google Scholar 

  37. Fletcher RL, Callow ME (1992) The settlement, attachment and establishment of marine algal spores. Br Phycol J 27:303–329. https://doi.org/10.1080/00071619200650281

    Article  Google Scholar 

  38. Ma SH, Ye Q, Pei XW, Wang DA, Zhou F (2015) Antifouling on Gecko’s feet inspired fibrillar surfaces: evolving from land to marine and from liquid repellency to algae resistance. Adv Mater Interfaces 2:1600257–1600269. https://doi.org/10.1002/admi.201500257

    Article  Google Scholar 

  39. Demirel YK, Uzun D, Zhang Y, Fang HC, Day AH, Turan O (2017) Effect of barnacle fouling on ship resistance and powering. Biofouling 33:819–834. https://doi.org/10.1080/08927014.2017.1373279

    Article  Google Scholar 

  40. Uzun D, Ozyurt R, Demirel YK, Turan O (2020) Does the barnacle settlement pattern affect ship resistance and powering? Appl Ocean Res 95:102020–102039. https://doi.org/10.1016/j.apor.2019.102020

    Article  Google Scholar 

  41. Dalsin JL, Hu B, Lee B, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258. https://doi.org/10.1021/ja0284963

    Article  CAS  Google Scholar 

  42. Soares CG, Garbatov Y, Zayed A, Wang G (2009) Influence of environmental factors on corrosion of ship structures in marine atmosphere. Corros Sci 51:2014–2026. https://doi.org/10.1016/j.corsci.2009.05.028

    Article  CAS  Google Scholar 

  43. Jiang YL, Liang XR, Wu SY (2011) Nanotechnology applications in the field of ship protection. Mater Sci Forum 694:239–243. https://doi.org/10.4028/www.scientific.net/MSF.694.239

    Article  CAS  Google Scholar 

  44. Selim MS, El-Safty SA, El-Sockary MA, Hashem AI, Abo EOM, El-Saeed AM, Fatthallah NA (2016) Data on photo-nanofiller models for self-cleaning foul release coating of ship hulls. Data Brief 8:1357–1364. https://doi.org/10.1016/j.dib.2016.08.010

    Article  Google Scholar 

  45. Smaradhana DF, Prabowo AR, Ganda ANF (2021) Exploring the potential of graphene materials in marine and shipping industries—a technical review for prospective application on ship operation and material-structure aspects. J Ocean Eng Sci 6:299–316. https://doi.org/10.1016/j.joes.2021.02.004

    Article  Google Scholar 

  46. Miller RJ, Adeleye AS, Page HM, Kui L, Lenihan HS, Keller AA (2020) Nano and traditional copper and zinc antifouling coatings: metal release and impact on marine sessile invertebrate communities. J Nanopart Res 22:1–15. https://doi.org/10.1007/s11051-020-04875-x

    Article  CAS  Google Scholar 

  47. Liu ZX, Tian S, Li Q, Wang JC, Pu JB, Wang G, Zhao WJ, Feng F et al (2020) Integrated dual-functional ORMOSIL coatings with AgNPs@rGO nanocomposite for corrosion resistance and antifouling applications. ACS Sustain Chem Eng 8:6786–6797. https://doi.org/10.1021/acssuschemeng.0c01294

    Article  CAS  Google Scholar 

  48. Zhang JX, Pan MX, Luo CB, Chen XP, Kong JR, Zhou T (2016) A novel composite paint (TiO2/fluorinated acrylic nanocomposite) for antifouling application in marine environments. J Environ Chem Eng 4:2545–2555. https://doi.org/10.1016/j.jece.2016.05.002

    Article  CAS  Google Scholar 

  49. Pourhashem S, Saba F, Duan JZ, Rashidi A, Guan F, Nezhad EG, Hou BR (2020) Polymer/inorganic nanocomposite coatings with superior corrosion protection performance: a review. J Ind Eng Chem 88:29–57. https://doi.org/10.1016/j.jiec.2020.04.029

    Article  CAS  Google Scholar 

  50. Archana S, Sundaramoorthy B (2019) Review on biofouling prevention using nanotechnology. J Entomol Zool Stud 7:640–648. https://doi.org/10.22271/j.ento

    Article  Google Scholar 

  51. Sathya S, Murthy PS, Das AS, Gomathi SG, Venkatnarayanan S, Pandian R, Sathyaseelan VS, Pandiyan V et al (2016) Marine antifouling property of PMMA nanocomposite films: results of laboratory and field assessment. Int Biodeterior Biodegrad 114:57–66. https://doi.org/10.1016/j.ibiod.2016.05.026

    Article  CAS  Google Scholar 

  52. Fazli-Shokouhi S, Nasirpouri F, Khatamian M (2019) Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties. J Coat Technol Res 16:983–997. https://doi.org/10.1007/s11998-018-00173-3

    Article  CAS  Google Scholar 

  53. Pernak J, Kalewska J, Ksycińska H, Cybulski J (2001) Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group. Eur J Med Chem 36:899–907. https://doi.org/10.1016/S0223-5234(01)01280-6

    Article  CAS  Google Scholar 

  54. Zecher K, Aitha VP, Heuer K, Ahlers H, Roland K, Fiedel M, Philipp B (2018) A multi-step approach for testing non-toxic amphiphilic antifouling coatings against marine microfouling at different levels of biological complexity. J Microbiol Methods 146:104–114. https://doi.org/10.1016/j.mimet.2018.02.009

    Article  Google Scholar 

  55. Gudipati CS, Finlay JA, Callow JA, Callowet ME, Wooley KL (2005) The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir 21:3044–3053. https://doi.org/10.1021/la048015o

    Article  CAS  Google Scholar 

  56. Wen SF, Wang P, Wang L (2021) Preparation and antifouling performance evaluation of fluorine-containing amphiphilic silica nanoparticles. Colloids Surf A Physicochem Eng Asp 611:125823–125831. https://doi.org/10.1016/j.colsurfa.2020.125823

    Article  CAS  Google Scholar 

  57. Krishnan S, Ayothi R, Hexemer A, Finlay JA, Sohn KE, Perry R, Ober CK, Kramer EJ et al (2006) Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir 22:5075–5086. https://doi.org/10.1021/la052978l

    Article  CAS  Google Scholar 

  58. Galli G, Martinelli E (2017) Amphiphilic polymer platforms: surface engineering of films for marine antibiofouling. Macromol Rapid Commun 38:1600704–1600724. https://doi.org/10.1002/marc.201600704

    Article  CAS  Google Scholar 

  59. Gudipati CS, Greenlief CM, Johnson JA, Prayongpan P, Wooley KL (2004) Hyperbranched fluoropolymer and linear poly(ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: an insight into the surface compositions, topographies, and morphologies. J Polym Sci A Polym Chem 42:6193–6208. https://doi.org/10.1002/pola.20466

    Article  CAS  Google Scholar 

  60. Lin CA, Sperling RA, Li JK, Yang TY, Li PY, Zanella M, Chang WH, Parak WJ (2008) Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4:334–341. https://doi.org/10.1002/smll.200700654

    Article  CAS  Google Scholar 

  61. Barletta M, Aversa C, Pizzi E, Puopolo M, Vesco S (2018) Design, manufacturing and testing of anti-fouling/foul-release (AF/FR) amphiphilic coatings. Prog Org Coat 123:267–281. https://doi.org/10.1016/j.porgcoat.2018.07.016

    Article  CAS  Google Scholar 

  62. Zhang Z, Chao T, Chen S, Jiang S (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22:10072–10077. https://doi.org/10.1021/la062175d

    Article  CAS  Google Scholar 

  63. Koschitzki F, Wanka R, Sobota L, Koc J, Gardner H, Hunsucker KZ, Swain GW, Rosenhahn A (2020) Amphiphilic dicyclopentenyl/carboxybetaine-containing copolymers for marine fouling-release applications. ACS Appl Mater Interfaces 12:34148–34160. https://doi.org/10.1021/acsami.0c07599

    Article  CAS  Google Scholar 

  64. Lu GM, Tian S, Li JY, Xu YJ, Liu S, Pu JB (2021) Fabrication of bio-based amphiphilic hydrogel coating with excellent antifouling and mechanical properties. Chem Eng J 409:128134–128147. https://doi.org/10.1016/j.cej.2020.128134

    Article  CAS  Google Scholar 

  65. Guo H, Chen P, Tian S, Ma Y, Li Q, Wen C, Yang J, Zhang L (2020) Amphiphilic marine antifouling coatings based on a hydrophilic polyvinylpyrrolidone and hydrophobic fluorine-silicon-containing block copolymer. Langmuir 36:14573–14581. https://doi.org/10.1021/acs.langmuir.0c02329

    Article  CAS  Google Scholar 

  66. Kumar S, Ye F, Mazinani B, Dobretsov S, Dutta J (2021) Chitosan nanocomposite coatings containing chemically resistant ZnO–SnOx core-shell nanoparticles for photocatalytic antifouling. Int J Mol Sci 22:4513–4529. https://doi.org/10.3390/ijms22094513

    Article  CAS  Google Scholar 

  67. Zhang HR, Mane AU, Yang XB, Xia ZJ, Barry EF, Luo JQ, Wan YH, Elam JW et al (2020) Visible-light-activated photocatalytic films toward self-cleaning membranes. Adv Funct Mater 30:2002874–2002882. https://doi.org/10.1002/adfm.202002847

    Article  CAS  Google Scholar 

  68. Zhang X, Zhang J, Yu JQ, Zhang Y, Cui ZX, Sun Y, Hou BR (2018) Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Appl Catal B 220:57–66. https://doi.org/10.1016/j.apcatb.2017.07.074

    Article  CAS  Google Scholar 

  69. Zhang L, Sha J, Chen R, Liu Q, Liu J, Yu J, Zhang H, Lin C et al (2020) Three-dimensional flower-like shaped Bi5O7I particles incorporation zwitterionic fluorinated polymers with synergistic hydration-photocatalytic for enhanced marine antifouling performance. J Hazard Mater 389:121854–121862. https://doi.org/10.1016/j.jhazmat.2019.121854

    Article  CAS  Google Scholar 

  70. Zhu ZY, Zhou F, Zhan S, Tian Y, He QC (2018) Study on the bactericidal performance of graphene/TiO2 composite photocatalyst in the coating of PEVE. Appl Surf Sci 430:116–124. https://doi.org/10.1016/j.apsusc.2017.07.289

    Article  CAS  Google Scholar 

  71. Scandura G, Ciriminna R, Xu YJ, Pagliaro M, Palmisano G (2016) Nanoflower-like Bi2WO6 encapsulated in ORMOSIL as a novel photocatalytic antifouling and foul-release coating. Chemistry 22:7063–7067. https://doi.org/10.1002/chem.201600831

    Article  CAS  Google Scholar 

  72. Heng ZW, Chong WC, Pang YL, Sim LC, Koo CH (2021) Novel visible-light responsive NCQDs-TiO2/PAA/PES photocatalytic membrane with enhanced antifouling properties and self-cleaning performance. J Environ Chem Eng 9:105388–105399. https://doi.org/10.1016/j.jece.2021.105388

    Article  CAS  Google Scholar 

  73. Wan J, Huang J, Yu H, Liu L, Shi Y, Liu C (2021) Fabrication of self-assembled 0D–2D Bi2MoO6-g-C3N4 photocatalytic composite membrane based on PDA intermediate coating with visible light self-cleaning performance. J Colloid Interface Sci 601:229–241. https://doi.org/10.1016/j.jcis.2021.05.038

    Article  CAS  Google Scholar 

  74. Li YJ, Xue YJ, Tian J, Song XJ, Zhang XJ, Wang XZ, Cui HZ (2017) Silver oxide decorated graphitic carbon nitride for the realization of photocatalytic degradation over the full solar spectrum: from UV to NIR region. Sol Energy Mater Sol Cells 168:100–111. https://doi.org/10.1016/j.solmat.2017.04.031

    Article  CAS  Google Scholar 

  75. Liu TT, Wang L, Liu X, Sun CX, Lv YT, Miao R, Wang XD (2020) Dynamic photocatalytic membrane coated with ZnIn2S4 for enhanced photocatalytic performance and antifouling property. Chem Eng J 379:122379–122390. https://doi.org/10.1016/j.cej.2019.122379

    Article  CAS  Google Scholar 

  76. Zhu CY, Liu GG, Han K, Ye HQ, Wei SC, Zhou YH (2017) One-step facile synthesis of graphene oxide/TiO2 composite as efficient photocatalytic membrane for water treatment: Crossflow filtration operation and membrane fouling analysis. Chem Eng Process 120:20–26. https://doi.org/10.1016/j.cep.2017.06.012

    Article  CAS  Google Scholar 

  77. Zhang ZX, Li YK, Chen RR, Liu Q, Liu JY, Yu J, Zhang HS, Song DL et al (2021) Photocatalytic antifouling coating based on carbon nitride with dynamic acrylate boron fluorinated polymers. New J Chem 45:780–787. https://doi.org/10.1039/d0nj05132b

    Article  CAS  Google Scholar 

  78. Zhu ZY, Zhou F, Zhan S (2020) Enhanced antifouling property of fluorocarbon resin coating (PEVE) by the modification of g-C3N4/Ag2WO4 composite step-scheme photocatalyst. Appl Surf Sci 506:144934–144942. https://doi.org/10.1016/j.apsusc.2019.144934

    Article  CAS  Google Scholar 

  79. Song YP, Zhou F (2020) Antifouling properties of PEVE coating modified by BiVO4/BiOIO3 composite photocatalyst. Appl Phys A 126:1–8. https://doi.org/10.1007/s00339-020-03717-w

    Article  CAS  Google Scholar 

  80. Song YP, Zhou F, Chai YH, Zhan S (2021) Study on high antibacterial RGO/Bi2WO6 microspheres combined with PEVE coating for marine sterilization under visible light. Res Chem Intermed 47:2297–2310. https://doi.org/10.1007/s11164-021-04400-2

    Article  CAS  Google Scholar 

  81. Di TM, Xu QL, Ho WK, Tang H, Xiang QJ, Yu JG (2019) Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 11:1394–1411. https://doi.org/10.1002/cctc.201802024

    Article  CAS  Google Scholar 

  82. Wang XF, Li SF, Ma YQ, Yu HG, Yu JG (2011) H2WO4·H2O/Ag/AgCl composite nanoplates: a plasmonic Z-scheme visible-light photocatalyst. J Phys Chem C 115:14648–14655. https://doi.org/10.1021/jp2037476

    Article  CAS  Google Scholar 

  83. Wang W, Xu LK, Li XB, Lin ZF, Yang Y, An EP (2014) Self-healing mechanisms of water triggered smart coating in seawater. J Mater Chem A 2:1914–1921. https://doi.org/10.1039/c3ta13389c

    Article  CAS  Google Scholar 

  84. Chang RX, Huang YF, Shan GR, Bao YZ, Yun XY, Dong TG, Pan PJ (2015) Alternating poly(lactic acid)/poly(ethylene-co-butylene) supramolecular multiblock copolymers with tunable shape memory and self-healing properties. Polym Chem 6:5899–5910. https://doi.org/10.1039/c5py00742a

    Article  CAS  Google Scholar 

  85. Chuo TW, Wei TC, Liu YL (2013) Electrically driven self-healing polymers based on reversible guest-host complexation of β-cyclodextrin and ferrocene. J Polym Sci A Polym Chem 51:3395–3403. https://doi.org/10.1002/pola.26736

    Article  CAS  Google Scholar 

  86. Hu P, Xie QY, Ma CF, Zhang GZ (2021) Fouling resistant silicone coating with self-healing induced by metal coordination. Chem Eng J 406:126870–126879. https://doi.org/10.1016/j.cej.2020.126870

    Article  CAS  Google Scholar 

  87. Wang C, Wang T, Hu PD, Shen T, Xu JH, Ding CD, Fu JJ (2020) Dual-functional anti-biofouling coatings with intrinsic self-healing ability. Chem Eng J 389:123469–123507. https://doi.org/10.1016/j.cej.2019.123469

    Article  CAS  Google Scholar 

  88. Ye YW, Chen H, Zou YJ, Ye Y, Zhao HC (2020) Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel. Corros Sci 174:108825–108860. https://doi.org/10.1016/j.corsci.2020.108825

    Article  CAS  Google Scholar 

  89. Samadzadeh M, Boura SH, Peikari M, Kasiriha SM, Ashrafi A (2010) A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat 68:159–164. https://doi.org/10.1016/j.porgcoat.2010.01.006

    Article  CAS  Google Scholar 

  90. Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, Watanabe M (2018) Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater 30:1802792–1802798. https://doi.org/10.1002/adma.201802792

    Article  CAS  Google Scholar 

  91. Zhao D, Feng M, Zhang L, He B, Chen X, Sun J (2021) Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr Polym 256:117580–117891. https://doi.org/10.1016/j.carbpol.2020.117580

    Article  CAS  Google Scholar 

  92. Xu JH, Ye S, Ding CD, Tan LH, Fu JJ (2018) Autonomous self-healing supramolecular elastomer reinforced and toughened by graphitic carbon nitride nanosheets tailored for smart anticorrosion coating applications. J Mater Chem A 6:5887–5898. https://doi.org/10.1039/c7ta09841c

    Article  CAS  Google Scholar 

  93. Chen Y, Kushner AM, Williams GA, Guan Z (2012) Multiphase design of autonomic self-healing thermoplastic elastomers. Nat Chem 4:467–472. https://doi.org/10.1038/nchem.1314

    Article  CAS  Google Scholar 

  94. Yang MS, Sun YH, Chen GM, Wang GY, Lin SZ, Sun ZY (2020) Preparation of a self-healing silicone coating for inhibiting adhesion of benthic diatoms. Mater Lett 268:127496–127499. https://doi.org/10.1016/j.matlet.2020.127496

    Article  CAS  Google Scholar 

  95. Wong TS, Kang SH, Tang SK, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447. https://doi.org/10.1038/nature10447

    Article  CAS  Google Scholar 

  96. Wu Y, Zhao W, Ou J (2021) Stable, superfast and self-healing fluid coating with active corrosion resistance. Adv Colloid Interface Sci 295:102494–102506. https://doi.org/10.1016/j.cis.2021.102494

    Article  CAS  Google Scholar 

  97. Zhang H, Liang YZ, Wang P, Zhang D (2019) Design of slippery organogel layer with room-temperature self-healing property for marine anti-fouling application. Prog Org Coat 132:132–138. https://doi.org/10.1016/j.porgcoat.2019.03.020

    Article  CAS  Google Scholar 

  98. He BL, Du YX, Wang BW, Zhao XY, Liu SJ, Ye Q, Zhou F (2022) Self-healing polydimethylsiloxane antifouling coatings based on zwitterionic polyethylenimine-functionalized gallium nanodroplets. Chem Eng J 427:131019–131027. https://doi.org/10.1016/j.cej.2021.131019

    Article  CAS  Google Scholar 

  99. Nwuzor IC, Idumah CI, Nwanonenyi SC, Ezeani OE (2021) Emerging trends in self-polishing anti-fouling coatings for marine environment. Saf Extreme Environ 3:9–25. https://doi.org/10.1007/s42797-021-00031-3

    Article  Google Scholar 

  100. Liu C (2015) Development of anti-fouling coating using in marine environment. Int J Environ Monitor Anal 3:373–376. https://doi.org/10.11648/j.ijema.20150305.30

    Article  Google Scholar 

  101. Chen YY, Liu ZX, Han S, Han J, Jiang DY (2016) Poly(propylene carbonate) polyurethane self-polishing coating for marine antifouling application. J Appl Polym Sci 133:43667–43675. https://doi.org/10.1002/app.43667

    Article  CAS  Google Scholar 

  102. Xu G, Liu P, Pranantyo D, Neoh Koon G, Kang ET (2018) Dextran- and chitosan-based antifouling, antimicrobial adhesion, and self-polishing multilayer coatings from pH-responsive linkages-enabled layer-by-layer assembly. ACS Sustain Chem Eng 6:3916–3926. https://doi.org/10.1021/acssuschemeng.7b04286

    Article  CAS  Google Scholar 

  103. Zhang JB, Liu YZ, Wang XW, Zhang CY, Liu H, Yang W, Cai MR, Pei XW et al (2020) Self-polishing emulsion platforms: Eco-friendly surface engineering of coatings toward water borne marine antifouling. Prog Org Coat 149:105945–105954. https://doi.org/10.1016/j.porgcoat.2020.105945

    Article  CAS  Google Scholar 

  104. Jo JH, Ko Hyun C, Kim BW, Park H, Lee IW, Chun HH, Jo NJ (2016) Micellar core-shell-type acrylic-polyurethane hybrid materials with self-polishing property. Compos Interfaces 23:797–805. https://doi.org/10.1080/09276440.2016.1173473

    Article  CAS  Google Scholar 

  105. Dai ZW, Cao M, Li SQ, Yao JH, Wu B, Wang YP, Wang HJ, Dong J et al (2021) A novel marine antifouling coating based on a self-polishing zinc-polyurethane copolymer. J Coat Technol Res 18:1333–1343. https://doi.org/10.1007/s11998-021-00496-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of Suzhou Science and Technology Project (Grant No. SYG201937) and by the Six-Talent Peak Project of Jiangsu Province (Grant No. XNYQC012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zheng, X., Zhang, H. et al. Review on formation of biofouling in the marine environment and functionalization of new marine antifouling coatings. J Mater Sci 57, 18221–18242 (2022). https://doi.org/10.1007/s10853-022-07791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07791-8

Navigation