Skip to main content
Log in

Coatings with metallic effect pigments for antimicrobial and conductive coating of textiles with electromagnetic shielding properties

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Effect pigments were originally developed to realize advanced optical effects by coating on several types of material surfaces. However, metallic effect pigments are expected to be valuable for many other applications, such as antimicrobial effects, electrical conductive coatings, or shielding against radio waves (electromagnetic shielding). Accordingly, the aim of this article is to evaluate the advanced properties which can be realized by application of coatings containing metallic effect pigments onto textile materials leading to new functional textiles. In total, four different metallic effect pigments were investigated and compared to silver and graphite pigments. By application of coatings with copper- or silver-containing effect pigments significant antibacterial properties against E. coli and S. aureus can be realized. To achieve electric conductive textiles, which also enable effective shielding against radio waves, a copper pigment carrying a silver coating leads to the best properties. Altogether, an effective coating method is presented to achieve functional textiles that offer a broad range of possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Scheme 3
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Weitzel, J, Maile, FJ, Kieser, M, Gabel, P, Pfaff, G, Special Effect Pigments. Vincentz Network, Hannover, 2008

    Google Scholar 

  2. Wißling, P, et al., Metallic Effect Pigments: Fundamentals and Applications. Vincentz Network, Hannover, 2006

    Google Scholar 

  3. Chorro, E, Perales, E, Martinez-Verdu, FM, Campos, J, Pons, A, “Colorimetric and Spectral Evaluation of the Optical Anisotropy of Metallic and Pearlescent Samples.” J. Mod. Opt., 56 1457–1465 (2009)

    Article  Google Scholar 

  4. Kirchner, E, van den Kleboom, G-J, Njo, L, Super, R, Gottenbos, R, “Observation of Visual Texture of Metallic and Pearlescent Materials.” Color Res. Appl., 32 256–266 (2007)

    Article  Google Scholar 

  5. Schwarz, S, Endriss, H, “Inorganic Colour Pigments and Effect Pigments—Technical and Environmental Aspects.” Color Technol., 25 6–17 (1995)

    Article  Google Scholar 

  6. Germer, TA, Nadal, ME, “Modelling the Appearance of Special Effect Pigment Coatings.” Proc. SPIE, 4447 77–86 (2001)

    Article  Google Scholar 

  7. Maile, FJ, Pfaff, G, Reynders, P, “Effect Pigments—Past, Present and Future.” Prog. Org. Coat., 54 150–163 (2005)

    Article  Google Scholar 

  8. Debeljak, M, Hladnik, A, Cerne, L, Gregor-Svetec, D, “Use of Effect Pigments for Quality Enhancement of Offset Printed Specialty Papers.” Color Res. Appl., 38 168–176 (2013)

    Article  Google Scholar 

  9. Gunde, MK, Kunaver, M, “Infrared Reflection—Absorption Spectra of Metal-Effect Coatings.” Appl. Spectrosc., 57 1266–1272 (2003)

    Article  Google Scholar 

  10. Kerr, S, “Creating Special Effects in Plastics.” Plast. Addit. Compd., 8 40–43 (2006)

    Article  Google Scholar 

  11. Maisch, R, Stahlecker, O, Kieser, M, “Mica Pigments in Solvent Free Coatings Systems.” Prog. Org. Coat., 27 145–152 (1996)

    Article  Google Scholar 

  12. Tenorio Cavalcante, PM, Dondi, M, Guarini, G, Barros, FM, Benvindo da Luz, A, “Ceramic Application of Mica Titania Pearlescent Pigments.” Dyes Pigments, 74 1–8 (2007)

    Article  Google Scholar 

  13. Bertaux, S, Reynders, P, Schweda, E, “The Reaction of Ceria Coatings on Mica with H2S: An In Situ X-ray Diffraction Study.” Mater. Res. Bull., 39 793–801 (2004)

    Article  Google Scholar 

  14. Wissling, P, “State-of-the-Art Technology in Aluminium Pigments for Aqueous Paints.” Surf. Coat. Int., 82 335–336 (1999)

    Article  Google Scholar 

  15. Egerton, TA, Purnama, H, “Does Hydrogen Peroxide Really Accelerate TiO2 UV-C Photocatalysed Decolouration of Azo-dyes Such as Reactive Orange 16?” Dyes Pigments, 101 280–285 (2014)

    Article  Google Scholar 

  16. Allen, NS, Edge, M, Verran, J, Stratton, J, Maltby, J, Bygott, C, “Photocatalytic Titania Based Surfaces: Environmental Benefits.” Polym. Degrad. Stab., 93 1632–1646 (2008)

    Article  Google Scholar 

  17. Eckart, “Speziell beschichtete Effektpigmente.” Technische Textilien, 56 64 (2013)

  18. Shackleton, R, Wendon, G, “Developments in Metallic Pigments.” Pigment Resin Technol., 1 27–30 (1972)

    Article  Google Scholar 

  19. Kim, TN, Feng, QL, Kim, JO, Wu, J, Wang, H, Chen, GC, Cui, FZ, “Antimicrobial Effects of Metal Ions (Ag+, Cu2+, Zn2+) in Hydroxyapatite.” J. Mater. Sci. Mater. Med., 9 129–134 (1998)

    Article  Google Scholar 

  20. Tsukada, M, Arai, T, Colonna, GM, Boschi, A, Freddi, G, “Preparation of Metal-Containing Protein Fibers and Their Antimicrobial Properties.” J. Appl. Polym. Sci., 89 638–644 (2003)

    Article  Google Scholar 

  21. Mahltig, B, Soltmann, U, Haase, H, “Modification of Algae with Zinc, Copper and Silver Ions for Usage as Natural Composite for Antibacterial Applications.” Mater. Sci. Eng. C, 33 979–983 (2013)

    Article  Google Scholar 

  22. Sondi, I, Salopek-Sondi, B, “Silver Nanoparticles as Antimicrobial Agent.” J. Colloid Interface Sci., 275 177–182 (2004)

    Article  Google Scholar 

  23. Kumar, R, Münstedt, H, “Silver Ion Release from Antimicrobial Polyamide/Silver Composites.” Biomaterials, 26 2081–2088 (2005)

    Article  Google Scholar 

  24. Textor, T, Fouda, MMG, Mahltig, B, “Deposition of Durable Thin Silver Layers onto Polyamides Employing a Heterogeneous Tollen’s Reaction.” Appl. Surf. Sci., 256 2337–2342 (2010)

    Article  Google Scholar 

  25. Mahltig, B, Fiedler, D, Fischer, A, Simon, P, “Antimicrobial Coatings on Textiles—Modification of Sol–Gel Layers with Organic and Inorganic Biocides.” J. Sol Gel. Sci. Technol., 55 269–277 (2010)

    Article  Google Scholar 

  26. Mahltig, B, Haase, H, “Comparison of the Effectiveness of Different Silver-Containing Textile Products on Bacteria and Human Cells.” J. Text. Inst., 103 1262–1266 (2012)

    Article  Google Scholar 

  27. Jiang, SX, Qin, WF, Guo, RH, Zhang, L, “Surface Functionalization of Nanostructured Silver-Coated Polyester Fabric by Magnetron Sputtering.” Surf. Coat. Technol., 204 3662–3667 (2010)

    Article  Google Scholar 

  28. Mahltig, B, Cheval, N, Astachov, V, Malkoch, M, Montanez, MI, Haase, H, Fahmi, A, “Hydroxyl Functional Polyester Dendrimers as Stabilizing Agent for Preparation of Colloid Silver Particles—A Study in Respect to Antimicrobial Properties and Toxicity Against Human Cells.” Colloid Polym. Sci., 290 1413–1421 (2012)

    Article  Google Scholar 

  29. Mahltig, B, Tatlises, B, Fahmi, A, Haase, H, “Dendrimer Stabilized Silver Particles for the Antimicrobial Finishing of Textiles.” J. Text. Inst., 104 1042–1048 (2013)

    Article  Google Scholar 

  30. Alimonhammadi, F, Gashti, MP, Shamei, A, “A Novel Method for Coating of Carbon Nanotube on Cellulose Fiber Using 1,2,3,4-Butanetetracarboxylic Acid as a Cross-Linking Agent.” Prog. Org. Coat., 74 470–478 (2012)

    Article  Google Scholar 

  31. Alimonhammadi, F, Gashti, MP, Shamei, A, “Functional Cellulose Fibers Via Polycarboxylic Acid/Carbon Nanotube Composite Coating.” J. Coat. Technol. Res., 10 123–132 (2013)

    Article  Google Scholar 

  32. Deokar, AR, Lin, L-Y, Chang, C–C, Ling, Y-C, “Single-Walled Carbon Nanotube Coated Antibacterial Paper: Preparation and Mechanistic Study.” J. Mater. Chem. B, 1 2639–2646 (2013)

    Article  Google Scholar 

  33. Hu, W, Peng, C, Luo, W, Lv, M, Li, X, Li, D, Huang, Q, Fan, C, “Graphene-Based Antibacterial Paper.” ACS Nano, 4 4317–4323 (2010)

    Article  Google Scholar 

  34. Simoncic, B, Tomsic, B, “Structures of Novel Antimicrobial Agents for Textiles—A Review.” Text. Res. J., 80 1721–1737 (2010)

    Article  Google Scholar 

  35. Höfer, D, “Antimicrobial Textiles, Skin-Borne Flora and Odour.” Curr. Probl. Dermatol., 33 67–77 (2006)

    Article  Google Scholar 

  36. Ricci, G, Patrizi, A, Bellini, F, Medri, M, “Use of Textiles in Atopic Dermatitis.” Curr. Probl. Dermatol., 33 127–143 (2006)

    Article  Google Scholar 

  37. Haug, S, Roll, A, Schmid-Grendelmeier, P, Johansen, P, Wüthrich, B, Kündig, TM, Senit, G, “Coated Textiles in the Treatment of Atopic Dermatitis.” Curr. Probl. Dermatol., 33 144–151 (2006)

    Article  Google Scholar 

  38. Butterly, A, Schmidt, U, Wiener-Kronish, J, “Methicillin-Resistant Staphylococcus aureus Colonization, Its Relationship to Nosocomial Infection, and Efficacy of Control Methods.” Anesthesiology, 113 1453–1459 (2010)

    Article  Google Scholar 

  39. Blaker, JJ, Nazhat, SN, Boccaccini, AR, “Development and Characterisation of Silver-Doped Bioactive Glass-Coated Sutures for Tissue Engineering and Wound Healing Applications.” Biomaterials, 25 1319–1329 (2004)

    Article  Google Scholar 

  40. Yin, HQ, Langford, R, Burrell, RE, “Comparative Evaluation of the Antimicrobial Activity of ACTICOAT Antimicrobial Barrier Dressing.” J. Burn Care Res., 20 195–200 (1999)

    Article  Google Scholar 

  41. Bertuleit, K, “Silver Coated Polyamide: A Conductive Fabric.” J. Coat. Fabr., 20 211–215 (1991)

    Google Scholar 

  42. Meoli, D, May-Plumlee, T, “Interactive Electronic Textile Development.” J. Text. Appar. Technol. Manag., 2 1–12 (2002)

    Google Scholar 

  43. Rizvi, SAH, Crown, EM, Osei-Ntiri, K, Smy, PR, Gonzalez, JA, “Electrostatic Characteristics of Thermal-Protective Garments at Low Humidity.” J. Text. Inst., 86 549–558 (1995)

    Article  Google Scholar 

  44. Li, T–T, Wang, R, Lou, C-W, Lin, M-C, Lin, J-H, “Manufacture and Effectiveness Evaluations of High-Modulus Electromagnetic Interference Shielding/Puncture Resisting Composites.” Text. Res. J., 83 1796–1807 (2013)

    Article  Google Scholar 

  45. Ceken, F, Kayacan, Ö, Özkurt, A, Ugurlu, SS, “The electromagnetic shielding properties of some conductive knitted fabrics produced on single or double needle bed of a flat knitting machine.” J. Text. Inst., 103 968–979 (2012)

    Article  Google Scholar 

  46. Wieckowski, TW, Janukiewicz, JM, “Methods for Evaluating the Shielding Effectiveness of Textiles.” Fibers Text. East. Europe, 14 18–22 (2006)

    Google Scholar 

  47. Lee, CY, Lee, DE, Jeong, CK, Hong, YK, Shim, JH, Joo, J, Kim, MS, Lee, JY, Jeong, SH, Byun, SW, Zang, DS, Yang, HG, “Electromagnetic Interference Shielding by Using Conductive Polypyrrole and Metal Compound Coated on Fabrics.” Polym. Adv. Technol., 13 577–583 (2002)

    Article  Google Scholar 

  48. Jiang, SX, Guo, RH, “Electromagnetic Shielding and Corrosion Resistance of Electroless Ni–P/Cu–Ni Multilayer Plated Polyester Fabric.” Surf. Coat. Technol., 205 4274–4279 (2011)

    Article  Google Scholar 

  49. Gashti, MP, Almasian, A, Gashti, MP, “Preparation of Electromagnetic Reflective Wool Using Nano-ZrO2/Citric Acid as Inorganic/Organic Hybrid Coating.” Sens. Actuators, 187 1–9 (2012)

    Article  Google Scholar 

  50. Al-Saleh, MH, Saadeh, WH, Sundararaj, U, “EMI Shielding Effectiveness of Carbon Based Nanostructured Polymeric Materials: A Comparative Study.” Carbon, 60 146–156 (2013)

    Article  Google Scholar 

  51. Liang, J, Wang, Y, Huang, Y, Ma, Y, Liu, Z, Cai, J, Zhang, C, Gao, H, Chen, Y, “Electromagnetic Interference Shielding of Grapheme/Epoxy Composites.” Carbon, 47 922–925 (2009)

    Article  Google Scholar 

  52. Wang, L-L, Tay, B-K, See, K-Y, Sun, Z, Tan, L-K, Lua, D, “Electromagnetic Interference Shielding Effectiveness of Carbon-Based Materials Prepared by Screen Printing.” Carbon, 47 1905–1910 (2009)

    Article  Google Scholar 

  53. Wessling, B, Hiesgen, R, Meissner, D, “STM Investigations on Primary Particle Morphology of Polyaniline.” Acta Polym., 44 132–134 (1993)

    Article  Google Scholar 

  54. Alam, J, Riaz, U, Ahmad, S, “High Performance Corrosion Resistant Polyaniline/Alkyd Ecofriendly Coatings.” Curr. Appl. Phys., 9 80–86 (2009)

    Article  Google Scholar 

  55. Phang, SW, Tadokoro, M, Watanabe, J, Kuramoto, N, “Synthesis, Characterization and Microwave Absorption Property of Doped Polyaniline Nanocomposites Containing TiO2 Nanoparticles and Carbon Nanotubes.” Synth. Met., 158 251–258 (2008)

    Article  Google Scholar 

  56. Biscaro, RS, Rezende, MC, Faez, R, “Reactive Doping of PAni-CSA and Its Use in Microwave Absorbing Materials.” Polym. Adv. Technol., 20 28–34 (2009)

    Article  Google Scholar 

  57. Yan, J, Wei, T, Fan, Z, Qian, W, Zhang, M, Shen, X, Wei, F, “Preparation of Graphene Nanosheet/Carbon Nanotube/Polyaniline Composite as Electrode Material for Supercapacitors.” J. Power Sources, 195 3041–3046 (2010)

    Article  Google Scholar 

  58. Ying, D, Li, J, Yang, X, “Polyaniline as Nonmetal Catalyst for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene.” Catal. Commun., 9 2331–2333 (2008)

    Article  Google Scholar 

  59. Kaltenberg, J, Plum, L, Ober-Blöbaum, J, Hönscheidt, A, Rink, L, Haase, H, “Zinc Signals Promote IL-2-Dependent Proliferation of T Cells.” Eur. J. Immunol., 40 1496–1503 (2010)

    Article  Google Scholar 

  60. Mahltig, B, Reibold, M, Gutmann, E, Textor, T, Gutmann, J, Haufe, H, Haase, H, “Preparation of Silver Nanoparticles Suitable for Textile Finishing Processes to Produce Textiles with Strong Antibacterial Properties Against Different Bacteria Types.” J. Chem. Sci., 66B 905–919 (2011)

    Google Scholar 

  61. Kirchner, E, “Film Shrinkage and Flake Orientation.” Prog. Org. Coat., 65 333–336 (2009)

    Article  Google Scholar 

  62. Bhat, NV, Gore, AV, Nate, MM, Upadhyay, SS, “Development of Antistatic and Antibacterial Fabrics Using Novel Materials.” Bombay Text. Res., 36 1–6 (2006)

    Google Scholar 

  63. Seshadri, DT, Bhat, NV, “Use of Polyaniline as an Antimicrobial Agent in Textiles.” Indian J. Fibre Text. Res., 30 204–206 (2005)

    Google Scholar 

  64. Wallhäußer, KH, Praxis der Sterilisation Desinfektion-Konservierung. Georg Thieme Verlag, Stuttgart, 1995

    Google Scholar 

  65. Müller, B, Schubert, M, “Corrosion Inhibition of Copper and Brass Pigments in Aqueous Alkaline Media by Copolymers.” Prog. Org. Coat., 37 193–197 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

For funding of the electromicroscopic equipment the authors acknowledge very gratefully the program FH-Basis of the German federal country North-Rhine-Westphalia NRW. For support of metallic effect pigments, the company Eckart GmbH is gratefully acknowledged and many thanks for helpful and interesting discussions are given to Dr. P. Wissling. All product and company names mentioned in this article may be trademarks of their respective owners, also without labeling. The results presented in the current paper are a part of a broader investigation of effect pigment coatings on textiles performed by Kristin Topp during her master thesis (University of Applied Sciences, Mönchengladbach, Germany, October 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mahltig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topp, K., Haase, H., Degen, C. et al. Coatings with metallic effect pigments for antimicrobial and conductive coating of textiles with electromagnetic shielding properties. J Coat Technol Res 11, 943–957 (2014). https://doi.org/10.1007/s11998-014-9605-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-014-9605-8

Keywords

Navigation