Skip to main content
Log in

Effect pigments for textile coating: a review of the broad range of advantageous functionalization

  • Review Paper
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The presented review will introduce the use of effect pigments as a powerful tool for the functionalization of textiles. This review starts with a short introduction on the basics of effect pigments and their properties. Subsequently, some principles of effect pigment application onto textiles and the interaction of pigment to binder systems are reported. Different possible functionalizations realized on textiles are presented. Four main types of application are discussed: optical properties, electrical properties, barrier coatings, and antimicrobial applications. Also a view of some prospective anisotropic materials is given. Altogether it is shown that the application of effect pigments can be a powerful tool to realize functional textiles for a broad range of applications in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 6
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wißling, P, et al., Metallic Effect Pigments: Fundamentals and Applications. Vincentz Network, Hannover (2006)

    Google Scholar 

  2. Weitzel, J, Maile, FJ, Kieser, M, Gabel, P, Pfaff, G, Special Effect Pigments. Vincentz Network, Hannover (2008)

    Google Scholar 

  3. Maisch, R, Weigand, M, Perlglanzpigmente. Verlag Moderne Industrie, Landsberg/Lech (1991)

    Google Scholar 

  4. Chorro, E, Perales, E, Martinez-Verdu, FM, Campos, J, Pons, A, “Colorimetric and Spectral Evaluation of the Optical Anisotropy of Metallic and Pearlescent Samples.” J. Mod. Opt., 56 1457–1465 (2009)

    Article  Google Scholar 

  5. Faulkner, EB, Schwartz, RJ, High Performance Pigments. Wiley, Weinheim (2009)

    Book  Google Scholar 

  6. Germer, TA, Nadal, ME, “Modelling the Appearance of Special Effect Pigment Coatings.” Proc. SPIE, 4447 77–86 (2001)

    Article  Google Scholar 

  7. Maile, FJ, Pfaff, G, Reynders, P, “Effect Pigments—Past, Present and Future.” Prog. Org. Coat., 54 150–163 (2005)

    Article  Google Scholar 

  8. Kerr, S, “Creating Special Effects in Plastics.” Plast. Addit. Compd., 8 40–43 (2006)

    Article  Google Scholar 

  9. Debeljak, M, Hladnik, A, Cerne, L, Gregor-Svetec, D, “Use of Effect Pigments for Quality Enhancement of Offset Printed Specialty Papers.” Color Res. Appl., 38 168–176 (2013)

    Article  Google Scholar 

  10. Topp, K, Haase, H, Degen, C, Illing, G, Mahltig, B, “Coatings with Metallic Effect Pigments for Antimicrobial and Conductive Coating of Textiles with Electromagnetic Shielding Properties.” J. Coat. Technol. Res., 11 943–957 (2014)

    Article  Google Scholar 

  11. Mahltig, B, Darko, D, Günther, K, Haase, H, “Copper Containing Coatings for Metallized Textile Fabrics.” J. Fash. Technol. Text. Eng., 3 (1) 1–10 (2015)

    Google Scholar 

  12. Wißling, P, et al., Metalleffekt-Pigmente. Vincentz Network, Hannover, 2 edition, 2013

  13. Sunchemical (Cincinnati, USA) www.sunpigments.com

  14. BASF (Ludwigshafen, Germany) www.dispersions-pigments.basf.com

  15. Merck (Darmstadt, Germany) www.merck-performance-materials.com

  16. Eckart (Hartenstein, Germany) http://www.eckart.de/

  17. Ostertag, W, “Preparation of Effect Pigments Coated with Metal Oxides.” US patent, 4,552,593, 1985.

  18. Ostertag, W, Schmidt, H, Interference Pigments for Preparing Forgeryproof Documents. US patent, US5573584A, 1992

  19. Schmidt, C, Pfaff, G, Schank C, Schoen, S, Interference Pigments. US patent, US6596070B1, 1997

  20. Cavalcante, PMT, Dondi, M, Guarini, G, Barros, FM, da Luz Benvindo, A, “Ceramic Application of Mica Titania Pearlescent Pigments.” Dyes Pigments, 74 1–8 (2007)

    Article  Google Scholar 

  21. Schwarz, S, Endriss, H, “Inorganic Colour Pigments and Effect Pigments—Technical and Environmental Aspects.” Color. Technol., 25 6–17 (1995)

    Article  Google Scholar 

  22. Maisch, R, Stahlecker, O, Kieser, M, “Mica Pigments in Solvent Free Coatings Systems.” Prog. Org. Coat., 27 145–152 (1996)

    Article  Google Scholar 

  23. Kirchner, E, van den Kleboom, G-J, Njo, L, Super, R, Gottenbos, R, “Observation of Visual Texture of Metallic and Pearlescent Materials.” Color. Res. Appl., 32 256–266 (2007)

    Article  Google Scholar 

  24. Bertaux, S, Reynders, P, Schweda, E, “The Reaction of Ceria Coatings on Mica with H2S: an In Situ X-ray Diffraction Study.” Mater. Res. Bull., 39 793–801 (2004)

    Article  Google Scholar 

  25. Pfaff, G, “Perlglanzpigmente.” Chem. unserer Zeit, 31 6–16 (1997)

    Article  Google Scholar 

  26. Moini, A, Fuller, DS, Kober, AE, Zimmermann, CJ, Noble Metal Coated Substrate Pigment. US patent, US6517939B1, 1999

  27. Schmid, R, Mronga, N, Multiply Coated Metallic Luster Pigments. US patent, US5624486A, 1994

  28. Anselmann, R, Ambrosius, K, Mathias, M, Effect Pigments Based on Coated Glass Flakes. US patent, US7226503B2, 2001

  29. Müller, B, Schubert, M, “Corrosion Inhibition of Copper and Brass Pigments in Aqueous Alkaline Media by Copolymers.” Prog. Org. Coat., 37 193–197 (1999)

    Article  Google Scholar 

  30. Wissling, P, “State-of-the-Art Technology in Aluminium Pigments for Aqueous Paints.” Surf. Coat. Int., 82 335–336 (1999)

    Article  Google Scholar 

  31. Kiehl, A, Greiwe, K, “Encapsulated Aluminium Pigments.” Prog. Org. Coat., 37 179–183 (1999)

    Article  Google Scholar 

  32. Kirchner, E, “Film Shrinkage and Flake Orientation.” Prog. Org. Coat., 65 333–336 (2009)

    Article  Google Scholar 

  33. Wißling, P., Funktionale Effektpigmente für Technische Textilien. Company information of Eckart/Altana (2015)

  34. Diffey, BL, “Sources and Measurement of Ultraviolet Radiation.” Methods, 28 4–13 (2002)

    Article  Google Scholar 

  35. Maslowsky, E, “Comparison of the Electromagnetic Spectra of Common Light Sources.” J. Chem. Educ., 90 1488–1492 (2013)

    Article  Google Scholar 

  36. MacIssac, D, Kanner, G, Anderson, G, “Basic Physics of the Incandescent Lamp (lightbulb).” Phys. Teach., 37 520–525 (1999)

    Article  Google Scholar 

  37. Laxer, H, Safety Inks and Documents. US patent, US3886083A, 1974

  38. Mahltig, B, Haufe, H, Kim, CW, Kang, YS, Gutmann, E, Leisegang, T, Meyer, DC, “Manganese/TiO2 Composites Prepared and Used for Photocatalytic Active Textiles.” Croat. Chem. Acta, 86 143–149 (2013)

    Article  Google Scholar 

  39. Horneck, G, “Quantification of the Biological Effectiveness of Environmental UV Radiation.” J. Photochem. Photobiol. B, 31 43–49 (1995)

    Article  Google Scholar 

  40. Brasch, DE, Rudolph, JA, Simon, JA, Lin, A, McKenna, GJ, Baden, HP, Halpern, AJ, Ponten, J, “A Role for Sunlight in Skin Cancer.” Proc. Natl. Acad. Sci. USA, 88 10124–10128 (1991)

    Article  Google Scholar 

  41. Cerkova, J, Stipek, S, Crkovska, J, Ardan, T, Platenik, J, Cejka, C, Midelfart, A, “UV Rays, the Prooxidant/Antioxidant Imbalance in the Cornea and Oxidative Eye Damage.” Physiol. Rev., 53 1–10 (2004)

    Google Scholar 

  42. Saravanan, D, “UV Protection Textile Materials.” AUTEX Res. J., 7 53–62 (2007)

    Google Scholar 

  43. Tarbuk, A, Grancaric, AM, Situm, M, Martinis, M, “UV Clothing and Skin Cancer.” Coll. Antropol., 34 179–183 (2010)

    Google Scholar 

  44. Mahltig, B, Böttcher, H, Rauch, K, Dieckmann, U, Nitsche, R, Fritz, T, “Optimized UV Protecting Coatings by Combination of Organic and Inorganic UV Absorbers.” Thin Solid Films, 485 108–114 (2005)

    Article  Google Scholar 

  45. Gallas, JM, Medium Incorporating Melanin as an Absorbing Pigment Against Electromagnetic Radiation. US patent, US5112883, 1992

  46. Schieke, SM, Schroeder, P, Krutmann, J, “Cutaneous Effect of Infrared Radiation: From Clinical Observations to Molecular Response Mechanisms.” Photodermatol. Photoimmunol. Photomed., 19 228–234 (2003)

    Article  Google Scholar 

  47. Karu, T, “Primary and Secondary Mechanisms of Action of Visible to Near-IR Radiation on Cells.” J. Photochem. Photobiol. B, 49 1–17 (1999)

    Article  Google Scholar 

  48. Berdahl, PH, Pigments Which Reflect Infrared Radiation from Fire. US patent, US5811180A, 1994

  49. Gunde, MK, Kunaver, M, “Infrared Reflection–Absorption Spectra of Metal-Effect Coatings.” Appl. Spectrosc., 57 1266–1272 (2003)

    Article  Google Scholar 

  50. Levinson, R, Berdahl, P, Akbari, H, “Solar Spectral Optical Properties of Pigments—Part II: Survey of Common Colorants.” Sol. Energy Mater. Sol. Cells, 89 351–389 (2005)

    Article  Google Scholar 

  51. Gupta, KK, Nishkam, A, Kasturiya, N, “Camouflage in the Non-Visible Region.” J. Ind. Text., 31 27–42 (2001)

    Article  Google Scholar 

  52. Sutter, CR, Petelinkar, RA, Reeves, RE, Infrared Reflective Colored Metallic Compositions. US patent, US6468647B1, 1998

  53. Bendiganavale, AK, Malshe, VC, “Infrared Reflective Inorganic Pigments.” Recent Patents Chem. Eng., 1 67–79 (2008)

    Article  Google Scholar 

  54. George, G, Vishnu, VS, Reddy, MIP, “The Synthesis, Characterization and Optical Properties of Silicon Praseodymium Y6MoO12 Compounds: Environmentally Benign Inorganic Pigments with High NIR Reflectance.” Dyes Pigments, 88 109–115 (2011)

    Article  Google Scholar 

  55. Hunter, RS, The Measurement of Appearance. Wiley-IEEE, New York (1987)

    Google Scholar 

  56. Gunde, MK, Kunaver, M, “Infrared Reflection–Absorption Spectra of Metal-Effect Coatings.” Appl. Spectrosc., 57 1266–1272 (2003)

    Article  Google Scholar 

  57. Wong, YWV, Yuen, CWM, Leung, MYS, Ku, SKA, Lam, HLI, “Selected Applications of Nanotechnology in Textiles.” AUTEX Res. J., 6 1–8 (2006)

    Google Scholar 

  58. Textor, T, Mahltig, B, “A Sol–Gel Based Surface Treatment for Preparation of Water Repellent Antistatic Textiles.” Appl. Surf. Sci., 256 1668–1674 (2010)

    Article  Google Scholar 

  59. Talawar, MB, Agrawal, AP, Wani, DS, Bansode, MK, Gore, GM, “Primary Explosives: Electrostatic Discharge Initiation, Additive Effect and Its Relation to Thermal and Explosive Characteristics.” J. Hazardous Mater., 137 1074–1078 (2006)

    Article  Google Scholar 

  60. Wilson, N, “The Risk of Fire or Explosion Due to Static Charges on Textile Clothing.” J. Electrost., 4 67–84 (1977)

    Article  Google Scholar 

  61. Warburton, CE, Benischeck, JJ, Antisoiling Treatment for Carpets and Carpet Yarns. US patent, US4081383A

  62. Meoli, D, May-Plumlee, T, “Interactive Electronic Textile Development.” J. Text. Appar. Technol. Manag., 2 1–12 (2002)

    Google Scholar 

  63. Li, T-T, Wang, R, Lou, C-W, Lin, M-C, Lin, J-H, “Manufacture and Effectiveness Evaluations of High-Modulus Electromagnetic Interference Shielding/Puncture Resisting Composites.” Text. Res. J., 83 1796–1807 (2013)

    Article  Google Scholar 

  64. Ceken, F, Kayacan, Ö, Özkurt, A, Ugurlu, SS, “The Electromagnetic Shielding Properties of Some Conductive Knitted Fabrics Produced on Single or Double Needle Bed of a Flat Knitting Machine.” J. Text. Inst., 103 968–979 (2012)

    Article  Google Scholar 

  65. Wieckowski, TW, Janukiewicz, JM, “Methods for Evaluating the Shielding Effectiveness of Textiles.” Fibers Text. East. Eur., 14 18–22 (2006)

    Google Scholar 

  66. Rattfalt, L, Linden, M, Hult, P, Berglin, L, Ask, P, “Electrical Characteristics of Conductive Yarns and Textile Electrodes for Medical Applications.” Med. Biol. Eng. Comput., 45 1251–1257 (2007)

    Article  Google Scholar 

  67. Ortlek, HG, Alpyildiz, T, Kilic, G, “Determination of Electromagnetic Shielding Performance of Hybrid Yarn Knitted Fabrics with Anechoic Chamber Method.” Text. Res. J., 83 90–99 (2013)

    Article  Google Scholar 

  68. Calabro, E, Magazu, S, “Monitoring Electromagnetic Field Emitted by High Frequencies Home Utilities.” J. Electromagn. Anal. Appl., 2 1–9 (2010)

    Google Scholar 

  69. Abdul-Razzaq, W, Bushey, RK, “Household Electrosmog.” Am. J. Health Sci., 4 131–135 (2013)

    Google Scholar 

  70. Aniolczyk, H, Koprowska, J, Mamrot, P, Lichawska, J, “Application of Electrically Conductive Textiles as Electromagnetic Shields in Physiotherapy.” Fibres Text. East. Eur., 12 47–50 (2004)

    Google Scholar 

  71. Elvers, H-D, Jandrig, B, Grummich, K, Tannert, C, “Mobile Phones and Health: Media Coverage Study of German Newspapers on Possible Adverse Health Effects of Mobile Phone Use.” Health Risk Soc., 11 165–179 (2009)

    Article  Google Scholar 

  72. Wiedemann, PM, Schütz, H, “The Precautionary Principle and Risk Perception: Experimental Studies in the EMF Area.” Environ. Health Perspect., 113 402–405 (2005)

    Article  Google Scholar 

  73. Hebeish, AA, Elgamel, MA, Abdelhady, RA, Abdelaziz, AA, “Factors Affecting the Performance of the Radar Absorbant Textile Materials of Different Types and Structures.” Prog. Electromagn. Res. B, 3 219–226 (2008)

    Article  Google Scholar 

  74. Huang, C-W, Lee, K-C, “Application of ICA Technique to PCA Based Radar Target Recognition.” Prog. Electromagn. Res., 105 157–170 (2010)

    Article  Google Scholar 

  75. Safarova, V, Mility, J, “Electromagnetic Field Shielding Fabrics with Increased Comfort Properties.” Adv. Mater. Res., 677 161–168 (2013)

    Article  Google Scholar 

  76. Gashti, MP, Almasian, A, Gashti, MP, “Preparation of Electromagnetic Reflective Wool Using Nano-ZrO2/citric Acid as Inorganic/Organic Hybrid Coating.” Sens. Actuators A, 187 1–9 (2012)

    Article  Google Scholar 

  77. Gashti, MP, Eslami, S, “Structural, Optical and Electromagnetic Properties of Aluminum-Clay Nanocomposites.” Superlattices Microstruct., 51 135–148 (2012)

    Article  Google Scholar 

  78. Parvinzadeh, M, Eslami, S, “Optical and Electromagnetic Characteristics of Clay-Iron Oxide Nanocomposites.” Res. Chem. Intermed., 37 771–784 (2011)

    Article  Google Scholar 

  79. Gashti, MP, Almasian, A, “Synthesizing Tertiary Silver/Silica/Kaolinite Nanocomposite Using Photo-Reduction Method: Characterization of Morphology and Electromagnetic Properties.” Compos. B, 43 3374–3383 (2012)

    Article  Google Scholar 

  80. Gashti, MP, Elahi, A, Gashti, MP, “UV Radiation Inducing Succinic Acid/Silica-Kaolinite Network on Cellulose Fiber to Improve the Functionality.” Compos. B, 48 158–166 (2013)

    Article  Google Scholar 

  81. Eckart, Speziell beschichtete Effektpigmente. Technische Textilien 56 64 (2013)

  82. Borkow, G, Gabbay, J, “Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections.” Curr. Chem. Biol., 3 272–278 (2009)

    Google Scholar 

  83. Kim, TN, Feng, QL, Kim, JO, Wu, J, Wang, H, Chen, GC, Cui, FZ, “Antimicrobial Effects of Metal Ions (Ag+, Cu2+, Zn2+) in Hydroxyapatite.” J. Mater. Sci. Mater. Med., 9 129–134 (1998)

    Article  Google Scholar 

  84. Mahltig, B, Soltmann, U, Haase, H, “Modification of Algae with Zinc, Copper and Silver Ions for Usage as Natural Composite for Antibacterial Applications.” Mater. Sci. Eng. C, 33 979–983 (2013)

    Article  Google Scholar 

  85. Wallhäußer, KH, Praxis der Sterilisation Desinfektion-Konservierung. Georg Thieme Verlag, Stuttgart (1995)

    Google Scholar 

  86. Shrestha, R, Joshi, DR, Gopali, J, Piya, S, “Oligodynamic Action of Silver, Copper and Brass on Enteric Bacteria Isolated from Water of Kathmandu Valley.” Nepal J. Sci. Technol., 10 189–193 (2009)

    Google Scholar 

  87. Kumar, R, Munstedt, H, “Silver Ion Release from Antimicrobial Polyamide/Silver Composites.” Biomaterials, 26 2081–2088 (2005)

    Article  Google Scholar 

  88. Borkow, G, Gabbay, J, “Biocidal Textiles Can Help Fight Nosocomial Infections.” Med. Hypotheses, 70 990–994 (2008)

    Article  Google Scholar 

  89. Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 78 60–72 (2008)

    Article  Google Scholar 

  90. Blaker, JJ, Nazhat, SN, Boccaccini, AR, “Development and Characterisation of Silver-Doped Bioactive Glass-Coated Sutures for Tissue Engineering and Wound Healing Applications.” Biomaterials, 25 1319–1329 (2004)

    Article  Google Scholar 

  91. Haug, S, Roll, A, Schmid-Grendelmeier, P, Johansen, P, Wüthrich, B, Kündig, TM, Senit, G, “Coated Textiles in the Treatment of Atopic Dermatitis.” Curr. Probl. Dermatol., 33 144–151 (2006)

    Article  Google Scholar 

  92. Ricci, G, Patrizi, A, Bellini, F, Medri, M, “Use of Textiles in Atopic Dermatitis.” Curr. Probl. Dermatol., 33 127–143 (2006)

    Article  Google Scholar 

  93. Gauger, A, Mempel, M, Schekatz, A, Schäfer, T, Ring, J, Abeck, D, “Silver-Coated Textiles Reduce Staphylococcus Aureus Colonization in Patients with Atopic Eczema.” Dermatology, 207 15–21 (2003)

    Article  Google Scholar 

  94. Mahltig, B, Haase, H, “Comparison of the Effectiveness of Different Silver-Containing Textile Products on Bacteria and Human Cells.” J Text. Inst., 103 1262–1266 (2012)

    Article  Google Scholar 

  95. Haufe, H, Thron, A, Fiedler, D, Mahltig, B, Böttcher, H, “Biocidal Nanosol Coatings.” Surf. Coat. Int. Part B: Coat. Trans., 88 55–60 (2005)

    Article  Google Scholar 

  96. Sondi, I, Salopek-Sondi, B, “Silver Nanoparticles as Antimicrobial Agent.” J. Colloid Interface Sci., 275 177–182 (2004)

    Article  Google Scholar 

  97. Simoncic, B, Tomsic, B, “Structures of Novel Antimicrobial Agents for Textiles: A Review.” Text. Res. J., 80 1721–1737 (2010)

    Article  Google Scholar 

  98. Christensen, FM, Johnston, HJ, Stone, V, Aitken, RJ, Hankin, S, Peters, S, Aschberger, K, “Nano-Silver—Feasibility and Challenges for Human Health Risk Assessment based on Open Literature.” Nanotoxicology, 4 284–295 (2010)

    Article  Google Scholar 

  99. Ahamed, M, AlSalhi, MS, Siddiqui, MKJ, “Silver Nanoparticle Applications and Human Health.” Clin. Chim. Acta, 411 1841–1848 (2010)

    Article  Google Scholar 

  100. Mahltig, B, Reibold, M, Gutmann, E, Textor, T, Gutmann, J, Haufe, H, Haase, H, “Preparation of Silver Nanoparticles Suitable for Textile Finishing Processes to Produce Textiles with Strong Antibacterial Properties Against Different Bacteria Types.” Z. Naturforsch. B Chem. Sci., 66B 905–916 (2011)

    Article  Google Scholar 

  101. Mahltig, B, Natarajan, HS, ElBrini, Q, Wissling, P, Haase, H, “Metallhaltige Beschichtungen auf Textil—Konzepte und Eigenschaften.” TextilPlus, 1 (1/2) 30–33 (2013)

    Google Scholar 

  102. Horrocks, AR, Kandola, BK, Davies, PJ, Zhang, S, Padbury, SA, “Developments in Flame Retardant Texties: A Review.” Polym. Degrad. Stab., 88 3–12 (2005)

    Article  Google Scholar 

  103. Mahltig, B, Textor, T, Nanosols and Textiles. World Scientific, Singapore (2008)

    Book  Google Scholar 

  104. Gallavardin, S, Lohmann, U, Cziczo, D, “Analysis and Differentiation of Mineral Dust by Single Particle Laser Mass Spectrometry.” Int. J. Mass Spectrosc., 274 56–63 (2008)

    Article  Google Scholar 

  105. Grethe, T, Bidu, J, Mahltig, B, Haase, H, “Antimicrobial Finishing of Textiles by Modified Clay Minerals.” Melliand Int., 20 173–174 (2014)

    Google Scholar 

  106. Pribosic, I, Makovec, D, Drofenik, M, “Formation of Nanoneedles and Nanoplatelets of KNbO3 Perovskite During Templated Crystallization of the Precursor Gel.” Chem. Mater., 17 2953–2958 (2005)

    Article  Google Scholar 

  107. Saito, Y, Takao, H, “Synthesis of Polycrystalline Platelike NaNbO3 Particles.” J. Electroceram., 24 39–45 (2010)

    Article  Google Scholar 

  108. Franoombe, MH, Lewis, B, “Structural, Dielectric and Optical Properties of Ferroelectric Lead Metaniobte.” Acta Cryst., 11 696–703 (1958)

    Article  Google Scholar 

  109. Miseki, Y, Kato, H, Kudo, A, “Water Splitting into H2 and O2 Over Niobate and Titanate Photocatalysts with (111) Plane-Type Layered Perovskite Structure.” Energy Environ. Sci., 2 306–314 (2009)

    Article  Google Scholar 

  110. Moon, J, Carasso, ML, Krarup, HG, Kerchner, JA, Adair, JH, “Particle-Shape Control and Formation Mechanisms of Hydrothermally Derived Lead Titanate.” J. Mater. Res., 14 866–875 (1999)

    Article  Google Scholar 

  111. Lu, R, Yuan, J, Shi, H, Li, B, Wang, W, Wang, D, Cao, M, “Morphology-Controlled Synthesis and Growth Mechanism of Lead-Free Bismuth Sodium Titanate Nanostructures Via the Hydrothermal Route.” CrystEngComm, 15 3984–3991 (2013)

    Article  Google Scholar 

  112. Suyal, G, Colla, E, Gysel, R, Cantoni, M, Setter, N, “Piezoelectric Response and Polarization Switching in Small Anisotropic Perovskite Particles.” Nano Lett., 4 1339–1342 (2004)

    Article  Google Scholar 

  113. Ida, S, Ogata, C, Eguchi, M, Youngblood, WJ, Mallouk, TE, Matsumoto, Y, “Photoluminescence of Perovskite Nanosheets Prepared by Exfoliation of Layered Oxides.” J. Am. Chem. Soc., 130 7052–7059 (2008)

    Article  Google Scholar 

  114. Kwiecinska, B, Petersen, HI, “Graphite, Semi-Graphite, Natural Coke, and Natural Char Classification-ICCP System.” Int. J. Coal Geol., 57 99–116 (2004)

    Article  Google Scholar 

  115. Drzal, LT, Do, I, Conductive Coatings Produced by Monolayer Deposition on Surfaces. US patent, US200802280031A1, 2006

  116. Zheng, W, Wong, S-C, “Electrical Conductivity and Dielectric Properties of PMMA/Expanded Graphite Composites.” Compos. Sci. Technol., 63 225–235 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

For funding of the electromicroscopic equipment, the authors acknowledge very gratefully the program FH-Basis of the German federal country North Rhine-Westphalia NRW. All products and company names mentioned in this article may be trademarks of their respective owners, even without labeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mahltig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahltig, B., Zhang, J., Wu, L. et al. Effect pigments for textile coating: a review of the broad range of advantageous functionalization. J Coat Technol Res 14, 35–55 (2017). https://doi.org/10.1007/s11998-016-9854-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9854-9

Keywords

Navigation