Skip to main content
Log in

Antimicrobial coatings on textiles–modification of sol–gel layers with organic and inorganic biocides

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Antimicrobial textile materials were produced by sol–gel coatings with embedded biocidal compounds. For preparation a sol–gel procedure was used, starting from pure silica sols and 3-glycidyloxypropyltriethoxysilane (GLYEO) containing silica sols. These sols were modified with silver compounds, hexadecyltrimethyl-ammonium-p-toluolsulfonat (HTAT) and copper compounds, respectively. The investigations were performed on viscose fabrics as function of the concentration of biocidal compounds and of thermal treatment of textile after dip-coating between 80 up to 180 °C. The use of modified silica coatings leads to a decreased growth of fungi (Aspergillus niger) and bacteria (Bacillus subtilis and Pseudomonas putida) with increasing amount of the biocide embedded in the coating. The addition of GLYEO supports the biocidal effect of the coatings and enhances the stability of the coating solutions. For preparation of antimicrobial silica coatings the biocides silver, copper or HTAT can be used alone but the combination of these compounds leads to enhanced results against both fungi and bacteria. Therefore silica sols containing a combination of different types of biocides may be used for antimicrobial modification of textiles in some practical applications. For industrial applications the here presented coating solutions are especially advantageous, because of 90% water content in the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ovington LG (2001) Home Healthc Nurse 19:622

    Article  CAS  PubMed  Google Scholar 

  2. Yin HQ, Langford R, Burrell RE (1999) J Burn Care Rehabil 20:195

    Article  CAS  PubMed  Google Scholar 

  3. Fan F-RF, Bard AJ (2002) J Phys Chem B 106:279

    Article  CAS  Google Scholar 

  4. Schink M, Meyer-Ingold W, Bogdahn M, Ettner N (1999) German Patent DE19958458A1

  5. Mahltig B, Böttcher H (2003) J Sol-Gel Sci Technol 27:43

    Article  CAS  Google Scholar 

  6. Mahltig B, Haufe H, Böttcher H (2005) J Mater Chem 15:4385

    Article  CAS  Google Scholar 

  7. Textor T, Mahltig B (2010) Appl Surf Sci 256:1668

    Article  CAS  ADS  Google Scholar 

  8. Mahltig B, Böttcher H, Langen G, Meister M (2002) German Patent DE10249874.1

  9. Trapalis CC, Kokkoris M, Perdikakis G, Kordas G (2003) J Sol-Gel Sci Technol 26:1213

    Article  CAS  Google Scholar 

  10. Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Biomaterials 21:393

    Article  CAS  PubMed  Google Scholar 

  11. Böttcher H, Jagota C, Trepte J, Kallies K-H, Haufe H (1999) Journal of Controlled Release 60:57

    Article  PubMed  Google Scholar 

  12. Tomsic B, Simoncic B, Orel B, Cerne L, Tavcer PF, Zorko M, Jerman I, Vilcnik A, Kovac J (2008) J Sol-Gel Sci Technol 47:44

    Article  CAS  Google Scholar 

  13. Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers H, Simoncic A, Samardzija Z (2009) Carbohydr Polym 75:618

    Article  CAS  Google Scholar 

  14. Novotny M, Matousek J (2008) Ceramics-Silikaty 52:72

    CAS  Google Scholar 

  15. Reisfeld R, Saraidarov T, Levchenko V (2008) Optica Applicata 38:83

    CAS  Google Scholar 

  16. Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Biomacromolecules 8:1246

    Article  CAS  PubMed  Google Scholar 

  17. Böttcher H (2001) Mat-Wiss Werkstofftechn 32:759

    Article  Google Scholar 

  18. Marini M, Bondi M, Iseppi R, Toselli M, Pilati F (2007) European Polym J 43:3621

    Article  CAS  Google Scholar 

  19. Lansdown ABG (2006) Curr Probl Dermatol 33:17

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Zhong S, Zhang M, Lin Y (2009) J Mater Sci 44:457

    Article  CAS  ADS  Google Scholar 

  21. Mahltig B, Swaboda C, Roessler A, Böttcher H (2008) J Mater Chem 18:3180

    Article  CAS  Google Scholar 

  22. Böttcher H, Kallies K-H, Haufe H (1997) J Sol-Gel Sci Technol 8:651

    Google Scholar 

  23. Stobie N, Duddy B, McCormack DE, Colreavy J, Hildago M, McHale P, Hinder SJ (2008) Biomaterials 29:963

    Article  CAS  PubMed  Google Scholar 

  24. Zanaroli P (2003) Melliand Textilber 83:63

    Google Scholar 

  25. Mahltig B, Audenaert F, Böttcher H (2005) J Sol-Gel Sci Technol 34:103

    Article  CAS  Google Scholar 

  26. Weiping C, Lide Z (1997) J Phys: Condens Matter 9:7257

    Article  CAS  ADS  Google Scholar 

  27. Akhavan O, Azimirad R, Moshfegh AZ (2008) J Phys D: Appl Phys 41(2):235407

    Article  ADS  Google Scholar 

  28. Almeida RM, Marques AC, Ferrari M (2003) J Sol-Gel Sci Technol 26:891

    Article  CAS  Google Scholar 

  29. Li W, Seal S, Megan E, Ramsdell J, Scammon K, Lelong G, Lachal L, Richardson KA (2003) J Appl Phys 93:9553

    Article  CAS  ADS  Google Scholar 

  30. De G, Kundu D (2001) J Non-Cryst Solids 288:221

    Article  CAS  ADS  Google Scholar 

  31. Mahltig B, Fiedler D, Böttcher H (2004) J Sol-Gel Sci Technol 32:219

    Article  CAS  Google Scholar 

  32. Kim MS, Seok SI, Ahn BY, Koo SM, Paik SU (2003) J Sol-Gel Sci Technol 27:355

    Article  CAS  Google Scholar 

  33. Mahltig B, Fischer A (2010) J Polym Sci B, in press

  34. Wallhäußer KH (1995) Praxis der Sterilisation Desinfektion–Konservierung. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  35. Kreibig U, Vollmer M (1995) Optical Properties of Metal Clusters. Springer, Berlin

    Google Scholar 

  36. Salz D, Mahltig B, Baalmann A, Wark M, Jaeger N (2000) Phys Chem Chem Phys 2:3105

    Article  CAS  Google Scholar 

  37. De G, Gusso M, Tapfer L, Catalano M, Gonella F, Mattei G, Mazzoldi P, Battaglin G (1996) J Appl Phys 80:6734

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

For financial support the authors are grateful to the Bundesministerium für Arbeit und Wirtschaft (ANNA-project, Reg.-No. 59/03) and to the German AiF (Forschungskuratorium Textil; project: 15143BG). The authors owe many thanks to Dr. T. Textor (DTNW, Krefeld, Germany) for support of the SEM investigations. Paul Simon likes to thank Prof. H. Lichte for the possibility to use the TEM equipment at Triebenberg Laboratory for High-Resolution Electron Microscopy and Holography, TU Dresden, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mahltig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahltig, B., Fiedler, D., Fischer, A. et al. Antimicrobial coatings on textiles–modification of sol–gel layers with organic and inorganic biocides. J Sol-Gel Sci Technol 55, 269–277 (2010). https://doi.org/10.1007/s10971-010-2245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2245-2

Keywords

Navigation