Skip to main content
Log in

Hurdle Technologies Using Ultraviolet Irradiation as Preservation Strategies in Fruit Juices: Effects on Microbial, Physicochemical, and Sensorial Qualities

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Non-thermal processes are employed to decontaminate juice products with less negative impact on biochemical, sensorial, and nutritional properties of the products compared with traditional thermal processing. Different non-thermal technologies have been investigated to improve the quality and/or avoid undesirable changes in fruit juices that include ultraviolet (UV) irradiation, pulsed electric field (PEF), ultrasonication, ozonation, high-pressure processing, and membrane filtration. In this review, which focuses on current studies, largely from a decade ago, the combined impacts of UV irradiation and other non-thermal technologies (hurdle concept) on fresh fruit juices are addressed. The extensively researched products regarding the application of UV light processing to improve safety, maintain overall quality, and prolong shelf life were apple and orange juices. Based on the studies reviewed, the hurdle techniques (e.g., UV + PEF, UV + mild heat at 50 °C, UV-C + coupled microwave, UV + ultrasonication) reduced (> 5 log) spoilage/pathogenic microbes, viruses, and inactivated enzymes, while maintaining the fresh-like nutritional and sensorial quality of juices. However, achieving the right balance and synergy in hurdle technologies can be a challenge which should be more addressed in the future studies. Human trials also indicated that UV-irradiated juice had no cytotoxic effects on normal intestinal cells, but it stopped human colon cancer cells from growing. Treating fruit juices with UV in combination with other non-thermal hurdles could be an alternative to traditional thermal processing technologies in the food industry. However, commercialization, scale-up, regulatory, safety, economic, and ethical concerns of these technologies should be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  • Aaliya, B., Sunooj, K. V., Navaf, M., Akhila, P. P., Sudheesh, C., Mir, S. A., ... & George, J. (2021). Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and non-thermal processing techniques. Food Research International, 147, 110514.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar, K., Garvín, A., & Ibarz, A. (2018). Effect of UV–Vis processing on enzymatic activity and the physicochemical properties of peach juices from different varieties. Innovative Food Science & Emerging Technologies, 48, 83–89.

    Article  CAS  Google Scholar 

  • Alabdali, T. A., Icyer, N. C., Ucak Ozkaya, G., & Durak, M. Z. (2020). Effect of stand-alone and combined ultraviolet and ultrasound treatments on physicochemical and microbial characteristics of pomegranate juice. Applied Sciences, 10(16), 5458.

    Article  CAS  Google Scholar 

  • Ali, N., Popović, V., Koutchma, T., Warriner, K., & Zhu, Y. (2020). Effect of thermal, high hydrostatic pressure, and ultraviolet-C processing on the microbial inactivation, vitamins, chlorophyll, antioxidants, enzyme activity, and color of wheatgrass juice. Journal of Food Process Engineering, 43, e13036.

    Article  Google Scholar 

  • Amanina, A. K. Z., Rosnah, S., Noranizan, M. A., & Alifdalino, S. (2019). Comparison of UV-C and thermal pasteurisation for the quality preservation of pineapple-mango juice blend. Food Research, 3, 362–372.

    Article  Google Scholar 

  • Aneja, K. R., Dhiman, R., Aggarwal, N. K., & Aneja, A. (2014). Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. International journal of microbiology, 758942.

  • Antonio-Gutiérrez, O., López-Malo, A., Ramírez-Corona, N., & Palou, E. (2017). Enhancement of UVC-light treatment of tangerine and grapefruit juices through ultrasonic atomization. Innovative Food Science & Emerging Technologies, 39, 7–12.

    Article  Google Scholar 

  • Arshad, R. N., Abdul-Malek, Z., Roobab, U., Ranjha, M. M. A. N., Jambrak, A. R., Qureshi, M. I., ... & Aadil, R. M. (2022). Nonthermal food processing: A step towards a circular economy to meet the sustainable development goals. Food Chemistry: X, 16, 100516.

  • Assatarakul, K., Churey, J. J., Manns, D. C., & Worobo, R. W. (2012). Patulin reduction in apple juice from concentrate by UV radiation and comparison of kinetic degradation models between apple juice and apple cider. Journal of Food Protection, 75(4), 717–724.

    Article  CAS  PubMed  Google Scholar 

  • Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M., & Corbo, M. R. (2018). Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Comprehensive Reviews in Food Science and Food Safety, 17(1), 2–62.

    Article  PubMed  Google Scholar 

  • Bhattacharjee, C., Saxena, V. K., & Dutta, S. (2019). Novel thermal and non-thermal processing of watermelon juice. Trends in Food Science & Technology, 93, 234–243.

    Article  CAS  Google Scholar 

  • Bigi, F., Maurizzi, E., Quartieri, A., De Leo, R., Gullo, M., & Pulvirenti, A. (2022). Non-thermal techniques and the “hurdle” approach: How is food technology evolving? Trends in Food Science & Technology, 132, 11–39.

    Article  Google Scholar 

  • Carrillo, M. G., Ferrario, M., & Guerrero, S. (2018). Effectiveness of UV-C light assisted by mild heat on Saccharomyces cerevisiae KE 162 inactivation in carrot-orange juice blend studied by flow cytometry and transmission electron microscopy. Food Microbiology, 73, 1–10.

    Article  Google Scholar 

  • Carrillo, M., Ferrario, M., Schenk, M., & Guerrero, S. (2020). Effect of an UV-C light-based hurdle strategy for carrot-orange juice processing on candida parapsilosis inactivation and physiological state: Impact on juice sensory and physicochemical quality parameters. Food and Bioprocess Technology, 13, 1954–1967.

    Article  Google Scholar 

  • Czako, P., Zajác, P., Čapla, J., Vietoris, V., Maršálková, L., & Čurlej, J.,& Martišová, P. (2018). The effect of UV-C irradiation on grape juice turbidity, sensoric properties and microbial count. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 1–10.

    Article  Google Scholar 

  • Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R., ... & Cruz, A. G. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science & Technology, 102, 146–154.

    Article  CAS  Google Scholar 

  • do Prado, D. B., dos Anjos Szczerepa, M. M., Capeloto, O. A., Astrath, N. G. C., Dos Santos, N. C. A., Previdelli, I. T. S., ... & de Abreu Filho, B. A. (2019). Effect of ultraviolet (UV-C) radiation on spores and biofilms of Alicyclobacillus spp in industrialized orange juice. International Journal of Food Microbiology, 305, 108238.

    Article  PubMed  Google Scholar 

  • Fenoglio, D., Ferrario, M., Andreone, A., & Guerrero, S. (2022). Development of an orange-tangerine juice treated by assisted pilot-scale UV-C light and loaded with yerba mate: Microbiological, physicochemical, and dynamic sensory studies. Food and Bioprocess Technology, 15(4), 915–932.

    Article  CAS  Google Scholar 

  • Fenoglio, D., Ferrario, M., García Carrillo, M., Schenk, M., & Guerrero, S. (2020). Characterization of microbial inactivation in clear and turbid juices processed by short-wave ultraviolet light. Journal of Food Processing and Preservation, 44(6), e14452.

    Article  CAS  Google Scholar 

  • Ferreira, T. V., Mizuta, A. G., de Menezes, J. L., Dutra, T. V., Bonin, E., Castro, J. C., ... & de Abreu Filho, B. A. (2020). Effect of ultraviolet treatment (UV–C) combined with nisin on industrialized orange juice in Alicyclobacillus acidoterrestris spores. LWT, 133, 109911.

    Article  CAS  Google Scholar 

  • Gabriel, A. A. (2015). Combinations of selected physical and chemical hurdles to inactivate Escherichia coli O157: H7 in apple and orange juices. Food Control, 50, 722–728.

    Article  CAS  Google Scholar 

  • Golombek, P., Wacker, M., Buck, N., & Durner, D. (2021). Impact of UV-C treatment and thermal pasteurization of grape must on sensory characteristics and volatiles of must and resulting wines. Food Chemistry. https://doi.org/10.1016/j.foodchem.2020.128003

    Article  PubMed  Google Scholar 

  • Gómez-Sánchez, D. L., Antonio-Gutiérrez, O., López-Díaz, A. S., Palou, E., López-Malo, A., & Ramírez-Corona, N. (2020). Performance of combined technologies for the inactivation of Saccharomyces cerevisiae and Escherichia coli in pomegranate juice: The effects of a continuous-flow UV-Microwave system. Journal of Food Process Engineering, 43(12), e13565.

    Article  Google Scholar 

  • Groenewald, W. H., Gouws, P. A., Cilliers, F. P., & Witthuhn, R. C. (2013). The use of ultraviolet radiation as a nonthermal treatment for the inactivation of alicyclobacillus acidoterrestris spores in water, wash water from a fruit processing plant and grape juice concentrate. Journal for New Generation Sciences, 11(2), 19–32.

    Google Scholar 

  • Gouma, M., Álvarez, I., Condón, S., & Gayán, E. (2020). Pasteurization of carrot juice by combining UV-C and mild heat: Impact on shelf-life and quality compared to conventional thermal treatment. Innovative Food Science & Emerging Technologies, 64, 102362.

    Article  CAS  Google Scholar 

  • Ha, J. H., & Ha, S. D. (2010). Synergistic effects of ethanol and UV radiation to reduce levels of selected foodborne pathogenic bacteria. Journal of Food Protection, 73(3), 556–561.

    Article  PubMed  Google Scholar 

  • Hernández-Carranza, P., Peralta-Pérez, A., Avila-Sosa, R., Israel Ruiz-Lopez, I., Cesar Benitez-Rojas, A., & Enrique Ochoa-Velasco, C. (2021). Effect of ultraviolet-C light and mild thermal treatment on the storage life of orange juice. Czech Journal of Food Sciences, 39(2).

  • Jeon, M. J., & Ha, J. W. (2020). Inactivating foodborne pathogens in apple juice by combined treatment with fumaric acid and ultraviolet-A light, and mechanisms of their synergistic bactericidal action. Food Microbiology, 87, 103387.

    Article  CAS  PubMed  Google Scholar 

  • Kaya, Z., & Unluturk, S. (2019). Pasteurization of verjuice by UV-C irradiation and mild heat treatment. Journal of Food Process Engineering, 42(5), e13131.

    Article  Google Scholar 

  • Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., & Oh, D. H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety–A review. Food Control, 73, 1426–1444.

    Article  Google Scholar 

  • Khandpur, P., & Gogate, P. R. (2015). Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrasonics Sonochemistry, 27, 125–136.

    Article  CAS  PubMed  Google Scholar 

  • Kim, G. H., Lee, C. L., & Yoon, K. S. (2021). Combined hurdle technologies using UVC waterproof LED for inactivating foodborne pathogens on fresh-cut fruits. Foods, 10(8), 1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety, 15(5), 844–867.

    Article  CAS  PubMed  Google Scholar 

  • La Cava, E. L. M., & Sgroppo, S. C. (2019). Combined effect of UV-C light and mild heat on microbial quality and antioxidant capacity of grapefruit juice by flow continuous reactor. Food and Bioprocess Technology, 12, 645–653.

    Article  Google Scholar 

  • Linhares, Md. F. D., Alves Filho, E. G., Silva, L. M. A., Fonteles, T. V., Wurlitzer, N. J., de Brito, E. S., & Rodrigues, S. (2020). Thermal and non-thermal processing effect on açai juice composition. Food Research International, 136, 109506.

    Article  CAS  PubMed  Google Scholar 

  • Mansor, A., Shamsudin, R., Mohd Adzahan, N., & Hamidon, M. N. (2017). Performance of UV pasteurization with quartz glass sleeve on physicochemical properties and microbial activity of pineapple juice. Journal of Food Process Engineering, 40(1), e12263.

    Article  Google Scholar 

  • Meléndez-Pizarro, C. O., Calva-Quintana, A., Espinoza-Hicks, J. C., Sánchez-Madrigal, M. Á., & Quintero-Ramos, A. (2020). Continuous flow UV-C irradiation effects on the physicochemical properties of Aloe vera gel and pitaya (Stenocereus spp.) blend. Foods, 9(8), 1068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menezes, N. M. C., Tremarin, A., Junior, A. F., & de Aragão, G. M. F. (2019). Effect of soluble solids concentration on Neosartorya fischeri inactivation using UV-C light. International Journal of Food Microbiology, 296, 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Mesta-Vicuña, G., Quintero-Ramos, A., Meléndez-Pizarro, C., Galicia, T., Sánchez-Madrigal, M., Delgado, E., & Ruiz-Gutiérrez, M. (2022). Physical, Chemical and Microbiological Properties during Storage of Red Prickly Pear Juice Processed by a Continuous Flow UV-C System. Applied Sciences, 12, 3488. https://doi.org/10.3390/app12073488

    Article  CAS  Google Scholar 

  • Müller, A., Stahl, M. R., Greiner, R., & Posten, C. (2014). Performance and dose validation of a coiled tube UV-C reactor for inactivation of microorganisms in absorbing liquids. Journal of Food Engineering, 138, 45–52.

    Article  Google Scholar 

  • Ochoa-Velasco, C. E., Salcedo-Pedraza, C., Hernández-Carranza, P., & Guerrero-Beltrán, J. A. (2018). Use of microbial models to evaluate the effect of UV-C light and trans-cinnamaldehyde on the native microbial load of grapefruit (Citrus×paradisi) juice. International Journal of Food Microbiology, 282, 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Pagal, G. A., & Gabriel, A. A. (2020). Individual and combined mild heat and UV-C processes for orange juice against Escherichia coli O157: H7. LWT-Food Science and Technology, 126, 109295.

    Article  CAS  Google Scholar 

  • Pala, Ç. U., & Toklucu, A. K. (2013). Microbial, physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage. LWT-Food Science and Technology, 50(2), 426–431.

    Article  CAS  Google Scholar 

  • Pendyala, B., Patras, A., Ravi, R., Gopisetty, V. V. S., & Sasges, M. (2020). Evaluation of UV-C irradiation treatments on microbial safety, ascorbic acid, and volatile aromatics content of watermelon beverage. Food and Bioprocess Technology, 13, 101–111.

    Article  CAS  Google Scholar 

  • Pinto, E. P., Perin, E. C., Schott, I. B., Düsman, E., da Silva Rodrigues, R., Lucchetta, L., ... & Rombaldi, C. V. (2022). Phenolic compounds are dependent on cultivation conditions in face of UV-C radiation in ‘Concord’grape juices (Vitis labrusca). LWT-Food Science and Technology, 154, 112681.

    Article  CAS  Google Scholar 

  • Putnik, P., Kresoja, Ž, Bosiljkov, T., Jambrak, A. R., Barba, F. J., Lorenzo, J. M., ... & Kovačević, D. B. (2019). Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chemistry, 279, 150–161.

    Article  CAS  PubMed  Google Scholar 

  • Putnik, P., Pavlić, B., Šojić, B., Zavadlav, S., Žuntar, I., Kao, L., ... & Kovačević, D. B. (2020). Innovative hurdle technologies for the preservation of functional fruit juices. Foods, 9(6), 699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh, T., Yaparatne, S., Tripp, C. P., Nayak, B., & Amirbahman, A. (2018). Ultraviolet light-assisted photocatalytic disinfection of Escherichia coli and its effects on the quality attributes of white grape juice. Food and Bioprocess Technology, 11, 2242–2252.

    Article  CAS  Google Scholar 

  • Rifna, E. J., Ramanan, K. R., & Mahendran, R. (2019). Emerging technology applications for improving seed germination. Trends in Food Science & Technology, 86, 95–108.

    Article  CAS  Google Scholar 

  • Riganakos, K. A., Karabagias, I. K., Gertzou, I., & Stahl, M. (2017). Comparison of UV-C and thermal treatments for the preservation of carrot juice. Innovative Food Science & Emerging Technologies, 42, 165–172.

    Article  CAS  Google Scholar 

  • Roobab, U., Aadil, R. M., Madni, G. M., & Bekhit, A. E. D. (2018). The impact of nonthermal technologies on the microbiological quality of juices: A review. Comprehensive Reviews in Food Science and Food Safety, 17(2), 437–457.

    Article  PubMed  Google Scholar 

  • Sauceda-Gálvez, J. N., Codina-Torrella, I., Martinez-Garcia, M., Hernández-Herrero, M. M., Gervilla, R., & Roig-Sagués, A. X. (2021). Combined effects of ultra-high pressure homogenization and short-wave ultraviolet radiation on the properties of cloudy apple juice. LWT, 136, 110286.

    Article  Google Scholar 

  • Sauceda-Gálvez, J. N., Tió-Coma, M., Martinez-Garcia, M., Hernández-Herrero, M. M., Gervilla, R., & Roig-Sagués, A. X. (2020). Effect of single and combined UV-C and ultra-high pressure homogenisation treatments on inactivation of Alicyclobacillus acidoterrestris spores in apple juice. Innovative Food Science & Emerging Technologies, 60, 102299.

    Article  Google Scholar 

  • Shah, N. N. A. K., Sulaiman, A., Sidek, N. S. M., & Supian, N. A. M. (2019). Quality assessment of ozone-treated citrus fruit juices. International Food Research Journal, 26(5), 1405–1415.

    CAS  Google Scholar 

  • Silva, E. K., Meireles, M. A. A., & Saldaña, M. D. (2020). Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends in Food Science & Technology, 97, 381–390.

    Article  CAS  Google Scholar 

  • Souza, V. R., & Koutchma, T. (2021). Repair mechanisms of UV-induced damage of microorganism in foods.

  • Tiwari, B. K., & O’donnell, C. P., & Cullen, P. J. (2009). Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends in Food Science & Technology, 20(3–4), 137–145.

    Article  CAS  Google Scholar 

  • Tremarin, A., Brandão, T. R., & Silva, C. L. (2017). Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation. Food Control, 73, 18–23.

    Article  CAS  Google Scholar 

  • Umair, M., Jabeen, S., Ke, Z., Jabbar, S., Javed, F., Abid, M., ... & Conte-Junior, C. A. (2022). Thermal treatment alternatives for enzymes inactivation in fruit juices: Recent breakthroughs and advancements. Ultrasonics Sonochemistry, 86, 105999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usaga, J., Churey, J. J., Padilla-Zakour, O. I., & Worobo, R. W. (2014). Determination of the validation frequency for commercial UV juice processing units. Journal of Food Protection, 77(12), 2076–2080.

    Article  PubMed  Google Scholar 

  • Usaga, J., Manns, D. C., Moraru, C. I., Worobo, R. W., & Padilla-Zakour, O. I. (2017). Ascorbic acid and selected preservatives influence effectiveness of UV treatment of apple juice. LWT, 75, 9–16.

    Article  CAS  Google Scholar 

  • Visuthiwan, S., & Assatarakul, K. (2021). Kinetic modeling of microbial degradation and antioxidant reduction in lychee juice subjected to UV radiation and shelf life during cold storage. Food Control, 123, 107770.

    Article  CAS  Google Scholar 

  • Yang, Y., Shen, H., Tian, Y., You, Z., & Guo, Y. (2019). Effect of thermal pasteurization and ultraviolet treatment on the quality parameters of not-from-concentrate apple juice from different varieties. CyTA - Journal of Food, 17(1), 189–198. https://doi.org/10.1080/19476337.2019.1569725

    Article  CAS  Google Scholar 

  • Yıkmış, S., Barut Gök, S., Levent, O., & Kombak, E. (2021). Moderate temperature and UV-C light processing of Uruset apple juice: Optimization of bioactive components and evaluation of the impact on volatile profile, HMF and color. Journal of Food Process Engineering, 44(12), e13893.

    Article  CAS  Google Scholar 

  • Yin, F., Zhu, Y., Koutchma, T., & Gong, J. (2015). Inactivation and potential reactivation of pathogenic Escherichia coli O157: H7 in apple juice following ultraviolet light exposure at three monochromatic wavelengths. Food Microbiology, 46, 329–335.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 54(1), 1–13.

    Article  Google Scholar 

  • Zhao, D., Barrientos, J. U., Wang, Q., Markland, S. M., Churey, J. J., Padilla-Zakour, O. I., ... & Moraru, C. I. (2015). Efficient reduction of pathogenic and spoilage microorganisms from apple cider by combining microfiltration with UV treatment. Journal of Food Protection, 78(4), 716–722.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research is funded by Chulalongkorn University (No. ReinUni_65_03_33_22). This study is supported by the Second Century Fund (C2F), Chulalongkorn University for granting a postdoctoral fellowship to Dr. Saeid Jafari, and Dr. Khursheed Ahmad Shiekh. The Faculty of Science, Chulalongkorn University, was also acknowledged to support this work.

Author information

Authors and Affiliations

Authors

Contributions

Saeid Jafari and Khursheed Ahmad Shiekh: investigation and writing—original draft. Anet Režek Jambrak, Randy W. Worobo, Alaa El-Din Ahmed Bekhit, Sajid Maqsood, Isaya Kijpatanasilp, and Mahdi Ebrahimi: review and editing. Kitipong Assatarakul: conceptualization, funding acquisition, writing—original, review and editing, project administration, and supervision.

Corresponding author

Correspondence to Kitipong Assatarakul.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, S., Shiekh, K.A., Jambrak, A.R. et al. Hurdle Technologies Using Ultraviolet Irradiation as Preservation Strategies in Fruit Juices: Effects on Microbial, Physicochemical, and Sensorial Qualities. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03385-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03385-1

Keywords

Navigation