Skip to main content
Log in

Pulsed Light Processing in the Preservation of Juices and Fresh-Cut Fruits: A Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

During the last years, the worldwide market of fruit-based foods, mainly juices and fresh-cut commodities, has experienced an increasing consumption trend, which can be mainly attributed to changes in the human lifestyles. However, mechanical operations used during processing, as well as the chemical compounds and presence of native microorganisms, bring a rapid deterioration of juices and fresh-cut fruits. Therefore, those commodities are largely susceptible to microbial proliferation and physicochemical deterioration, triggering the spoilage and loss of the nutritional and sensorial attributes. Thus, minimal processing and innovative methods to produce fresh-like foods have been strongly studied during the last years. Consequently, pulsed light (PL) has emerged as an innovative technology for solid food and juice sanitization. The effectiveness of PL to inactivate and reduce the microbial loads has been attributed to physicochemical, photothermal and photophysical mechanisms. PL processing is not only capable of impacting on the microbial charge but also in the shelf-life, the amount of nutritional and antioxidant compounds and the sensorial attributes of vegetable products. However, those effects are also strongly associated with factors such as processing variables, food matrix properties and the microorganism characteristics. Hence, in this review a compilation of the current studies focused to evaluate the effects of PL treatments over the microbial inactivation and shelf-life extension, the concentration of bioactive compounds and antioxidant potential, as well as the changes of the physicochemical and sensorial quality of juices and fresh-cut fruits were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abida, J., Rayees, B., & Masoodi, F. A. (2014). Pulsed light technology: A novel method for food preservation. International Food Research International, 21(3), 839–848.

    Google Scholar 

  • Agüero, M. V., Jagus, R. J., Martín-Belloso, O., & Soliva-Fortuny, R. (2016). Surface decontamination of spinach by intense pulsed light treatments: Impact on quality attributes. Postharvest Biology and Technology, 121, 118–125. https://doi.org/10.1016/j.postharvbio.2016.07.018

    Article  CAS  Google Scholar 

  • Aguilar, K., Garvín, A., & Ibarz, A. (2018). Effect of UV–Vis processing on enzymatic activity and the physicochemical properties of peach juices from different varieties. Innovative Food Science and Emerging Technologies, 48, 83–89. https://doi.org/10.1016/j.ifset.2018.05.005

    Article  CAS  Google Scholar 

  • Aguilar, K., Garvín, A., Lara-Sagahón, A. V., & Ibarz, A. (2019). Ascorbic acid degradation in aqueous solution during UV-vis irradiation. Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.05.138

    Article  Google Scholar 

  • Aguiló-Aguayo, I., Charles, F., Renard, C. M. G. C., Page, D., & Carlin, F. (2013). Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biology and Technology, 86, 29–36. https://doi.org/10.1016/j.postharvbio.2013.06.011

    Article  CAS  Google Scholar 

  • Aguiló-Aguayo, I., Gangopadhyay, N., Lyng, J. G., Brunton, N., & Rai, D. K. (2017). Impact of pulsed light on colour, carotenoid, polyacetylene and sugar content of carrot slices. Innovative Food Science and Emerging Technologies, 42, 49–55. https://doi.org/10.1016/j.ifset.2017.05.006

    Article  CAS  Google Scholar 

  • Aguiló-Aguayo, I., Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2014). Impact of pulsed light treatments on quality characteristics and oxidative stability of fresh-cut avocado. LWT - Food Science and Technology, 59(1), 320–326. https://doi.org/10.1016/j.lwt.2014.04.049

    Article  CAS  Google Scholar 

  • Artés-Hernández, F., Escalona, V. H., Robles, P. A., Martínez-Hernández, G. B., & Artés, F. (2009). Effect of UV-C radiation on quality of minimally processed spinach leaves. Journal of the Science of Food and Agriculture, 89(3), 414–421. https://doi.org/10.1002/jsfa.3460

    Article  CAS  Google Scholar 

  • Avalos-Llano, K. R., Martín-Belloso, O., & Soliva-Fortuny, R. (2018). Effect of pulsed light treatments on quality and antioxidant properties of fresh-cut strawberries. Food Chemistry, 264, 393–400. https://doi.org/10.1016/j.foodchem.2018.05.028

    Article  CAS  Google Scholar 

  • Basak, S., Mahale, S., & Chakraborty, S. (2022). Changes in quality attributes of pulsed light and thermally treated mixed fruit beverages during refrigerated storage (4 °C) condition. Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2022.103025

    Article  Google Scholar 

  • Betetta, A., Vilchez, S. M. A., Panduro, L. K. I., Ramirez, R. D. Y., Juan Manuel Casma, C. J. M., & Eduardo, J. (2020). Shot vitamínico a base de camu camu. Universidad San Ignacio De Loyola, 1, 36–79.

    Google Scholar 

  • Bhagat, B., & Chakraborty, S. (2022). Potential of pulsed light treatment to pasteurize pomegranate juice: Microbial safety, enzyme inactivation, and phytochemical retention. LWT. https://doi.org/10.1016/j.lwt.2022.113215

    Article  Google Scholar 

  • Bhavya, M. L., & Umesh Hebbar, H. (2017). Pulsed light processing of foods for microbial safety. Food Quality and Safety, 1(3), 187–202.

    Article  CAS  Google Scholar 

  • Cao, X., Huang, R., & Chen, H. (2017). Evaluation of pulsed light treatments on inactivation of salmonella on blueberries and its impact on shelf-life and quality attributes. International Journal of Food Microbiology, 260, 17–26. https://doi.org/10.1016/j.ijfoodmicro.2017.08.012

    Article  CAS  Google Scholar 

  • Cao, X., Huang, R., & Chen, H. (2019). Evaluation of food safety and quality parameters for shelf life extension of pulsed light treated strawberries. Journal of Food Science, 84(6), 1494–1500. https://doi.org/10.1111/1750-3841.14613

    Article  CAS  Google Scholar 

  • Chakraborty, S., Ghag, S., Bhalerao, P. P., & Gokhale, J. S. (2020). The potential of pulsed light treatment to produce enzymatically stable indian gooseberry (emblica officinalis gaertn.) juice with maximal retention in total phenolics and vitamin C. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.14932

    Article  Google Scholar 

  • Chakraborty, S., Mahale, S., Dhar, R., & Basak, S. (2022). Development of a mixed fruit beverage and pulsed light treatment thereof to obtain a microbially safe and enzymatically stable product. Food Bioscience. https://doi.org/10.1016/j.fbio.2021.101508

    Article  Google Scholar 

  • Charles, F., Vidal, V., Olive, F., Filgueiras, H., & Sallanon, H. (2013). Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. Innovative Food Science and Emerging Technologies, 18, 190–195. https://doi.org/10.1016/j.ifset.2013.02.004

    Article  Google Scholar 

  • Chisari, M., Barbagallo, R. N., Spagna, G., & Artes, F. (2011). Improving the quality of fresh-cut melon through inactivation of degradative oxidase and pectinase enzymatic activities by UV-C treatment. International Journal of Food Science and Technology, 46(3), 463–468.

    Article  CAS  Google Scholar 

  • de Almeida Lopes, M. M., Silva, E. O., Laurent, S., Charles, F., Urban, L., & de Miranda, M. R. A. (2017). The influence of pulsed light exposure mode on quality and bioactive compounds of fresh-cut mangoes. Journal of Food Science and Technology, 54(8), 2332–2340. https://doi.org/10.1007/s13197-017-2673-x

    Article  CAS  Google Scholar 

  • Denoya, G. I., Pataro, G., & Ferrari, G. (2020). Effects of postharvest pulsed light treatments on the quality and antioxidant properties of persimmons during storage. Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2019.111055

    Article  Google Scholar 

  • Duarte-Molina, F., Gómez, P. L., Castro, M. A., & Alzamora, S. M. (2016). Storage quality of strawberry fruit treated by pulsed light: Fungal decay, water loss and mechanical properties. Innovative Food Science and Emerging Technologies, 34, 267–274. https://doi.org/10.1016/j.ifset.2016.01.019

    Article  CAS  Google Scholar 

  • Ferrario, M., & Guerrero, S. (2016). Effect of a continuous flow-through pulsed light system combined with ultrasound on microbial survivability, color and sensory shelf life of apple juice. Innovative Food Science and Emerging Technologies, 34, 214–224. https://doi.org/10.1016/j.ifset.2016.02.002

    Article  CAS  Google Scholar 

  • Falguera, V., Garvín, A., Garza, S., Pagán, J., & Ibarz, A. (2014). Effect of UV-vis photochemical processing on pear juices from six different varieties. Food and Bioprocess Technology, 7(1), 84–92. https://doi.org/10.1007/s11947-013-1069-9

    Article  CAS  Google Scholar 

  • Falguera, V., Garza, S., Pagán, J., Garvín, A., & Ibarz, A. (2013). Effect of UV-vis irradiation on enzymatic activities and physicochemical properties of four grape musts from different varieties. Food and Bioprocess Technology, 6(8), 2223–2229. https://doi.org/10.1007/s11947-012-0781-1

    Article  CAS  Google Scholar 

  • Gill, J. M. R., & Sattar, N. (2014). Fruit juice: Just another sugary drink? The Lancet Diabetes and Endocrinology, 2, 444–446.

    Article  Google Scholar 

  • Gómez-López, V. M., & Bolton, J. R. (2016). An approach to standardize methods for fluence determination in bench-scale pulsed light experiments. Food Bioprocess Technology, 9, 1040–1048.

    Article  Google Scholar 

  • Gómez-López, V. M., Koutchma, T., & Linden, K. (2012). Ultraviolet and pulsed light processing of fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 185–223). Academic Press.

  • Gómez, P. L., García-Loredo, A., Nieto, A., Salvatori, D. M., Guerrero, S., & Alzamora, S. M. (2012). Effect of pulsed light combined with an antibrowning pretreatment on quality of fresh cut apple. Innovative Food Science and Emerging Technologies, 16, 102–112. https://doi.org/10.1016/j.ifset.2012.05.011

    Article  CAS  Google Scholar 

  • Huang, Y., Ye, M., Cao, X., & Chen, H. (2017). Pulsed light inactivation of murine norovirus, tulane virus, Escherichia coli O157:H7 and Salmonella in suspension and on berry surfaces. Food Microbiology, 61, 1–4. https://doi.org/10.1016/j.fm.2016.08.001

    Article  Google Scholar 

  • Ignat, A., Manzocco, L., Maifreni, M., Bartolomeoli, I., & Nicoli, M. C. (2014). Surface decontamination of fresh-cut apple by pulsed light: Effects on structure, colour and sensory properties. Postharvest Biology and Technology, 91, 122–127. https://doi.org/10.1016/j.postharvbio.2014.01.005

    Article  Google Scholar 

  • Inam-ur-Raheem, M., Saeed, M., Aslam, H., Shakeel, A., Raza, M. S., & Afzal, F. (2015). Effect of various minimal processing treatments on quality characteristics and nutritional value of spinach. Journal of Global Innovations in Agricultural and Social Sciences., 3, 76–83.

    Article  Google Scholar 

  • Izquier, A., & Gómez-López, V. M. (2011). Modeling the pulsed light inactivation of microorganisms naturally occurring on vegetable substrates. Food Microbiology, 28(6), 1170–1174.

    Article  Google Scholar 

  • Jin, T. Z., Aboelhaggag, R. M., & Guo, M. (2021). Apple juice preservation using combined nonthermal processing and antimicrobial packaging. Journal of Food Protection, 84(9), 1528–1538. https://doi.org/10.4315/JFP-21-035

    Article  Google Scholar 

  • Kaya, Z., Unluturk, S., Martin-Belloso, O., & Soliva-Fortuny, R. (2020). Effectiveness of pulsed light treatments assisted by mild heat on saccharomyces cerevisiae inactivation in verjuice and evaluation of its quality during storage. Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2020.102517

    Article  Google Scholar 

  • Koh, P. C., Noranizan, M. A., Karim, R., & Nur Hanani, Z. A. (2016). Repetitive pulsed light treatment at certain interval on fresh-cut cantaloupe (Cucumis melo L. reticulatus cv. glamour). Innovative Food Science and Emerging Technologies, 36, 92–103. https://doi.org/10.1016/j.ifset.2016.05.015

    Article  Google Scholar 

  • Kramer, B., Wunderlich, J., & Muranyi, P. (2015). Pulsed light decontamination of endive salad and mung bean sprouts and impact on color and respiration activity. Journal of Food Protection, 78(2), 340-348. https://doi.org/10.4315/0362-028X.JFP-14-262

  • Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M. T., Sackey, A. S., Wu, M., & Xiao, L. (2018). Effect of pulsed light treatment on the phytochemical, volatile, and sensorial attributes of lactic-acid-fermented mulberry juice. International Journal of Food Properties, 21(1), 213–228. https://doi.org/10.1080/10942912.2018.1446024

    Article  CAS  Google Scholar 

  • Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition (bethesda, Md.), 4(3), 384S-S392.

    Article  CAS  Google Scholar 

  • Llano, K. R. A., Marsellés-Fontanet, A. R., Martín-Belloso, O., & Soliva-Fortuny, R. (2016). Impact of pulsed light treatments on antioxidant characteristics and quality attributes of fresh-cut apples. Innovative Food Science and Emerging Technologies, 33, 206–215. https://doi.org/10.1016/j.ifset.2015.10.021

    Article  CAS  Google Scholar 

  • Lopes, M. M. A., Silva, E. O., Canuto, K. M., Silva, L. M. A., Gallão, M. I., Urban, L., & Miranda, M. R. A. (2016). Low fluence pulsed light enhanced phytochemical content and antioxidant potential of “tommy atkins” mango peel and pulp. Innovative Food Science and Emerging Technologies, 33, 216–224. https://doi.org/10.1016/j.ifset.2015.12.019

    Article  CAS  Google Scholar 

  • Luksiene, Z., Buchovec, I., & Viskelis, P. (2012). Impact of high-power pulsed light on microbial contamination, health promoting components and shelf life of strawberries. Food Technology and Biotechnology, 51(2), 284–292.

    Google Scholar 

  • Luksiene, Z., Buchovec, I., Kairyte, K., Paskeviciute, E., & Viskelis, P. (2013). High-power pulsed light for microbial decontamination of some fruits and vegetables with different surfaces. Journal of Food, Agriculture and Environment, 10(3–4), 162–167.

    Google Scholar 

  • Mandal, R., Mohammadi, X., Wiktor, A., Singh, A., & Pratap Singh, A. (2020). Applications of pulsed light decontamination technology in food processing: An overview. Applied Sciences, 10, 3606. https://doi.org/10.3390/app10103606

    Article  CAS  Google Scholar 

  • Manzocco, L., Da Pieve, S., & Maifreni, M. (2011). Impact of UV-C light on safety and quality of fresh-cut melon. Innovative Food Science and Emerging Technologies, 12(1), 13–17.

    Article  CAS  Google Scholar 

  • Murugesan, R., Orsat, V., & Lefsrud, M. (2012). Effect of pulsed ultraviolet light on the total phenol content of elderberry (Sambucus nigra) fruit. Food and Nutrition Sciences., 03, 774–783. https://doi.org/10.4236/fns.2012.36104

    Article  CAS  Google Scholar 

  • Nicorescu, I., Nguyen, B., Moreau-Ferret, M., Agoulon, A., Chevalier, S., & Orange, N. (2013). Pulsed light inactivation of Bacillus subtilis vegetative cells in suspensions and spices. Food Control, 31(1), 151–157.

    Article  Google Scholar 

  • Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 3(1), 13–23.

    Article  Google Scholar 

  • Ortiz Araque, L. C., Ortiz, C. M., Darré, M., Rodoni, L. M., Civello, P. M., & Vicente, A. R. (2019). Role of UV-C irradiation scheme on cell wall disassembly and surface mechanical properties in strawberry fruit. Postharvest Biology and Technology, 150, 122–128. https://doi.org/10.1016/j.postharvbio.2019.01.002

    Article  CAS  Google Scholar 

  • Ortiz Araque, L. C., Rodoni, L. M., Darré, M., Ortiz, C. M., Civello, P. M., & Vicente, A. R. (2018). Cyclic low dose UV-C treatments retain strawberry fruit quality more effectively than conventional pre-storage single high fluence applications. LWT - Food Science and Technology, 92, 304–311. https://doi.org/10.1016/j.lwt.2018.02.050

    Article  CAS  Google Scholar 

  • Pataro, G., Donsi, G., & Ferrari, G. (2015). Post-harvest UV-C and PL irradiation of fruits and vegetables. Chemical Engineering Transactions, 44, 31–36. https://doi.org/10.3303/CET1544006

    Article  Google Scholar 

  • Pollock, A. M., Singh, A. P., Ramaswamy, H. S., & Ngadi, M. O. (2017). Pulsed light destruction kinetics of L. monocytogenes. LWT, 84, 114–121.

    Article  CAS  Google Scholar 

  • Preetha, P., Pandiselvam, R., Varadharaju, N., Kennedy, Z. J., Balakrishnan, M., & Kothakota, A. (2021). Effect of pulsed light treatment on inactivation kinetics of escherichia coli (MTCC 433) in fruit juices. Food Control. https://doi.org/10.1016/j.foodcont.2020.107547

    Article  Google Scholar 

  • Ramos-Villarroel, A. Y., Aron-Maftei, N., Martín-Belloso, O., & Soliva-Fortuny, R. (2012). Influence of spectral distribution on bacterial inactivation and quality changes of fresh-cut watermelon treated with intense light pulses. Postharvest Biology and Technology, 69, 32–39.

    Article  Google Scholar 

  • Ramos-Villarroel, A. Y., Martín-Belloso, O., & Soliva-Fortuny, R. (2011). Bacterial inactivation and quality changes in fresh-cut avocado treated with intense light pulses. European Food Research and Technology, 233(3), 395–402. https://doi.org/10.1007/s00217-011-1533-6

    Article  CAS  Google Scholar 

  • Ramos-Villarroel, A. Y., Mart́n-Belloso, O., & Soliva-Fortuny, R. (2013). Intense light pulses: Microbial inactivation in fruits and vegetables [Pulsos de luz intensa: inactivació n microbiana en frutas y hortalizas]. CYTA - Journal of Food, 11(3), 234–242. https://doi.org/10.1080/19476337.2012.728628

    Article  Google Scholar 

  • Rodov, V., Vinokur, Y., & Horev, B. (2012). Brief postharvest exposure to pulsed light stimulates coloration and anthocyanin accumulation in fig fruit (ficus carica L.). Postharvest Biology and Technology, 68, 43–46. https://doi.org/10.1016/j.postharvbio.2012.02.001

    Article  CAS  Google Scholar 

  • Romero Bernal, A. R., Contigiani, E. V., González, H. H. L., Alzamora, S. M., Gómez, P. L., & Raffellini, S. (2019). Botrytis cinerea response to pulsed light: Cultivability, physiological state, ultrastructure and growth ability on strawberry fruit. International Journal of Food Microbiology. https://doi.org/10.1016/j.ijfoodmicro.2019.108311

    Article  Google Scholar 

  • Tao, T., Ding, C., Han, N., Cui, Y., Liu, X., & Zhang, C. (2019). Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: Effects on quality attributes during storage. Food Packaging and Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100358

    Article  Google Scholar 

  • US-FDA (2004) Guidance for industry: juice HACCP hazards and controls guidance, first edition. Code of federal Regulations. 21 CFR 101.17 (g). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-juice-hazard-analysis-critical-control-point-hazards-and-controls-guidance-first

  • Valdivia-Nájar, C. G., Martín-Belloso, O., & Soliva-Fortuny, R. (2018). Impact of pulsed light treatments and storage time on the texture quality of fresh-cut tomatoes. Innovative Food Science and Emerging Technologies, 45, 29–35. https://doi.org/10.1016/j.ifset.2017.08.007

    Article  Google Scholar 

  • Valdivia-Nájar, C. G., Martín-Belloso, O., Giner-Seguí, J., & Soliva-Fortuny, R. (2017). Modeling the inactivation of Listeria innocua and Escherichia coli in fresh-cut tomato treated with pulsed light. Food and Bioprocess Technology, 10(2), 266–274. https://doi.org/10.1007/s11947-016-1806-y

    Article  CAS  Google Scholar 

  • Velderrain-Rodríguez, G. R., Salmerón-Ruiz, M. L., González-Aguilar, G. A., Martín-Belloso, O., & Soliva-Fortuny, R. (2021). Ultraviolet/visible intense pulsed light irradiation of fresh-cut avocado enhances its phytochemicals content and preserves quality attributes. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.15289

    Article  Google Scholar 

  • Vollmer, K., Chakraborty, S., Bhalerao, P. P., Carle, R., Frank, J., & Steingass, C. B. (2020). Effect of pulsed light treatment on natural microbiota, enzyme activity, and phytochemical composition of pineapple (ananas comosus L. merr.) juice. Food and Bioprocess Technology, 13(7), 1095–1109. https://doi.org/10.1007/s11947-020-02460-7

    Article  CAS  Google Scholar 

  • Wang, B., Wei, W., Zhang, Y., Xu, H., & Ma, H. (2022). Decontamination and quality assessment of freshly squeezed grape juice under spiral continuous flow-through pulsed light (SCFPL) treatment. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.16186

    Article  Google Scholar 

  • Xu, W., & Wu, C. (2016). The impact of pulsed light on decontamination, quality, and bacterial attachment of fresh raspberries. Food Microbiology, 57, 135–143. https://doi.org/10.1016/j.fm.2016.02.009

    Article  CAS  Google Scholar 

Download references

Funding

Michelle Nicole Salazar-Zúñiga and Carlos Guillermo Valdivia-Nájar thank to the Consejo Nacional de Ciencia y Tecnología (CONACYT) for awarding a doctoral grant (887258) and the research-professor contract (Cátedra − 474. Food Innovations: Emerging technologies), respectively.

Author information

Authors and Affiliations

Authors

Contributions

M.N. Salazar-Zúñiga and J. Rodríguez-Campos wrote the main manuscript text. R. Sánchez-Vega and M.J. Rodríguez-Roque review the information regarding bioactive compounds and also prepared the figure and tables. E. Lugo-Cervantes and C.G. Valdivia-Nájar reviewed the information related to PL generalities, microbial inactivation and quality of juices and fresh-cut fruits. The revision of entire manuscript was done by all authors.

Corresponding author

Correspondence to C. G. Valdivia-Nájar.

Ethics declarations

Consent to Participate

The authors declare their consent to participate in this article.

Informed Consent

Informed consent is not applicable.

Consent for Publication

The authors declare their consent to publish this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Pulsed light (PL) is a non-thermal technology highly effective to reduce the microbial charges in food surfaces.

• PL treatments induced changes in the concentration of bioactive compounds.

• Enzymatic activity and physicochemical attributes of food products were affected by PL processing.

• Sensorial attributes of fresh-cut commodities were improved by PL.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Zúñiga, M.N., Lugo-Cervantes, E., Rodríguez-Campos, J. et al. Pulsed Light Processing in the Preservation of Juices and Fresh-Cut Fruits: A Review. Food Bioprocess Technol 16, 510–525 (2023). https://doi.org/10.1007/s11947-022-02891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02891-4

Keywords

Navigation