Skip to main content
Log in

Evaluation of UV-C Irradiation Treatments on Microbial Safety, Ascorbic Acid, and Volatile Aromatics Content of Watermelon Beverage

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

UV-C treatment technology is proposed as a potential alternative to thermal treatments for decontamination of beverages because heat may adversely affect the nutritive value and quality. Effects of UV-C irradiation processing on microbial inactivation, ascorbic acid, and volatile aromatics of watermelon beverage were evaluated using a flow-through UV system. Selected microbial agents Escherichia coli O157:H7 and Bacillus cereus endospores were inactivated by 5.31 ± 0.01 and 6.1 ± 0.01 log CFU mL−1 at UV equivalent fluence levels of 12 and 60 mJ cm−2, respectively. At UV pasteurization equivalent exposure (40 mJ cm−2), 93% ascorbic acid was retained. No significant loss of volatile aromatic aldehydes was noticed at fluence 40 mJ cm−2. Overall, the results support the UV-C processing as an alternative to traditional thermal processing to preserve quality in conjunction with microbial safety aspects of watermelon beverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adzahan, N. M. (2006). Effects of ultraviolet treatment on water soluble vitamin retention in aqueous model solutions and apple juice (dissertation).

  • Antonio-Gutiérrez, O. T., López-Díaz, A. S., López-Malo, A., Palou, E., & Ramírez-Corona, N. (2019). UV-C Light for processing beverages: principles, applications, and future trends. In Processing and Sustainability of Beverages (pp. 205–234).

    Google Scholar 

  • Bhullar, M. S., Patras, A., Kilonzo-Nthenge, A., Pokharel, B., Yannam, S. K., Rakariyatham, K., & Sasges, M. (2018). Microbial inactivation and cytotoxicity evaluation of UV irradiated coconut water in a novel continuous flow spiral reactor. Food Research International, 103, 59–67.

    CAS  PubMed  Google Scholar 

  • Blatchley III, E. R., Meeusen, A., Aronson, A. I., & Brewster, L. (2005). Inactivation of Bacillus spores by ultraviolet or gamma radiation. Journal of Environmental Engineering, 131, 1245–1252.

    CAS  Google Scholar 

  • Bolton, J. R. (2010). Ultraviolet applications handbook. Edmonton AB: ICC Lifelong Learn Inc..

    Google Scholar 

  • Caminiti, I. M., Noci, F., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2012a). The effect of pulsed electric fields, ultraviolet light or high intensity light pulses in combination with manothermosonication on selected physico-chemical and sensory attributes of an orange and carrot juice blend. Food and Bioproducts Processing, 90, 442–448.

    Google Scholar 

  • Caminiti, I. M., Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2012b). The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food and Bioprocess Technology, 5(2), 680–686.

    CAS  Google Scholar 

  • CFR - Code of Federal Regulations Title 21. Retrieved November 1, 2018, from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=113

  • Clau, M. (2006). Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength. Acta Hydrochimica et Hydrobiologica, 34, 525–532.

    Google Scholar 

  • Durban, E., & Grecz, N. (1969). Resistance of spores of Clostridium botulinum 33A to combinations of ultraviolet and gamma rays. Applied Microbiology, 18, 44–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • FDA, US. (2004). Guidance for industry: juice HACCP hazards and controls guidance first edition; Final Guidance. Washington DC: US FDA.

    Google Scholar 

  • Feng, M., Ghafoor, K., Seo, B., Yang, K., & Park, J. (2013). Effects of ultraviolet-C treatment in Teflon®-coil on microbial populations and physico-chemical characteristics of watermelon juice. Innovative Food Science & Emerging Technologies, 19, 133–139.

    CAS  Google Scholar 

  • Fleming, H. P., Cobb, W. Y., Etchells, J. L., & Bell, T. A. (1968). The formation of carbonyl compounds in cucumbers. Journal of Food Science, 33, 572–576.

    CAS  Google Scholar 

  • Franz, C. M., Specht, I., Cho, G.-S., Graef, V., & Stahl, M. R. (2009). UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control, 20, 1103–1107.

    CAS  Google Scholar 

  • Garcia, D., Voort, M. V. D., & Abee, T. (2010). Comparative analysis of Bacillus weihenstephanensis KBAB4 spores obtained at different temperatures. International Journal of Food Microbiology, 140(2-3), 146–153.

    PubMed  Google Scholar 

  • Geeraerd, A., Valdramidis, V., & Impe, J. V. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102, 95–105.

    CAS  PubMed  Google Scholar 

  • Ghosh, S., & Setlow, P. (2009). Isolation and characterization of superdormant spores of Bacillus Species. Journal of Bacteriology, 191(6), 1787–1797.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopisetty, V. V. S., Patras, A., Kilonzo-Nthenge, A., Yannam, S., Bansode, R. R., Sasges, M., & Xiao, H. (2018). Impact of UV-C irradiation on the quality, safety, and cytotoxicity of cranberry-flavored water using a novel continuous flow UV system. LWT, 95, 230–239.

    CAS  Google Scholar 

  • Gopisetty, V. V. S., Patras, A., Pendyala, B., Kilonzo-Nthenge, A., Ravi, R., Pokharel, B., & Sasges, M. (2019). UV-C irradiation as an alternative treatment technique: Study of its effect on microbial inactivation, cytotoxicity, and sensory properties in cranberry-flavored water. Innovative Food Science & Emerging Technologies, 52, 66–74.

    CAS  Google Scholar 

  • Gunter-Ward, D. M., Patras, A., Bhullar, M. S., Kilonzo-Nthenge, A., Pokharel, B., & Sasges, M. (2018). Efficacy of ultraviolet (UV-C) light in reducing foodborne pathogens and model viruses in skim milk. Journal of Food Processing and Preservation, 42, e13485.

    Google Scholar 

  • Jafari, S. M., Saremnejad, F., & Dehnad, D. (2017). Nano-fluid thermal processing of watermelon juice in a shell and tube heat exchanger and evaluating its qualitative properties. Innovative Food Science & Emerging Technologies, 42, 173–179.

    CAS  Google Scholar 

  • Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety, 15, 844–867.

    CAS  Google Scholar 

  • La Cava, E. L. M., & Sgroppo, S. C. (2019). Combined effect of UV-C light and mild heat on microbial quality and antioxidant capacity of grapefruit juice by flow continuous reactor. Food and Bioprocess Technology, 1–9.

  • Liu, Y., Hu, X., Zhao, X., & Song, H. (2012). Combined effect of high pressure carbon dioxide and mild heat treatment on overall quality parameters of watermelon juice. Innovative Food Science & Emerging Technologies, 13, 112–119.

    Google Scholar 

  • Mamane-Gravetz, H., & Linden, K. G. (2004). UV disinfection of indigenous aerobic spores: Implications for UV reactor validation in unfiltered waters. Water Research, 38(12), 2898–2906.

    CAS  PubMed  Google Scholar 

  • Martins, C. P., Ferreira, M. V. S., Esmerino, E. A., Moraes, J., Pimentel, T. C., Rocha, R. S., & Teodoro, A. J. (2018). Chemical, sensory, and functional properties of whey-based popsicles manufactured with watermelon juice concentrated at different temperatures. Food Chemistry, 255, 58–66.

    CAS  PubMed  Google Scholar 

  • Orlowska, M., Koutchma, T., Grapperhaus, M., Gallagher, J., Schaefer, R., & Defelice, C. (2013). Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: effects on quality of fructose solution, apple juice, and milk. Food and Bioprocess Technology, 6, 1580–1592.

  • Oteiza, J. M., Giannuzzi, L., & Zaritzky, N. (2010). Ultraviolet treatment of orange juice to inactivate E. coli O157: H7 as affected by native microflora. Food and Bioprocess Technology, 3(4), 603–614.

  • Pala, Ç. U., & Toklucu, A. K. (2013). Effects of UV-C light processing on some quality characteristics of grape juices. Food and Bioprocess Technology, 6(3), 719–725.

    CAS  Google Scholar 

  • Patras, A., & Koutchma, T. (2014). “Ultraviolet treatment of orange juice to inactivate E. coli O157: H7 as affected by native microflora” by Juan M. Oteiza, Leda Giannuzzi, Noemí Zaritzky [Food and Bioprocess Technology 3–4 (2010) 603–614]. Food and Bioprocess Technology, 7(4), 1215–1216.

    Google Scholar 

  • Patras, A., & Sasges, M. (2018). Corrigendum to UV dose measurement. Food Control, 90, 29–31.

    Google Scholar 

  • Peabody, E. (2007). Watermelon serves up medically important amino acid: Agricultural Research Services. United States Department of Agriculture (http://www.ars.usda).

  • Pendyala, B., Patras, A., Gopisetty, V. V. S., Sasges, M., & Balamurugan, S. (2019). Inactivation of Bacillus and Clostridium spores in coconut water by ultraviolet light. Foodborne Pathogens and Disease. https://doi.org/10.1089/fpd.2019.2623.

    CAS  PubMed  Google Scholar 

  • Petruzzi, L., Campaniello, D., Speranza, B., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2017). Thermal treatments for fruit and vegetable juices and beverages: a literature overview. Comprehensive Reviews in Food Science and Food Safety, 16, 668–691.

    Google Scholar 

  • Riley, J. C. M., & Thompson, J. E. (1998). Ripening-induced acceleration of volatile aldehyde generation following tissue disruption in tomato fruit. Physiologia Plantarum, 104, 571–576.

    CAS  Google Scholar 

  • Roobab, U., Aadil, R. M., Madni, G. M., & Bekhit, A. E. D. (2018). The impact of nonthermal technologies on the microbiological quality of juices: a review. Comprehensive Reviews in Food Science and Food Safety, 17(2), 437–457.

    Google Scholar 

  • Santhirasegaram, V., Razali, Z., George, D. S., & Somasundram, C. (2015). Effects of thermal and non-thermal processing on phenolic compounds, antioxidant activity and sensory attributes of chokanan mango (Mangifera indica L.) juice. Food and Bioprocess Technology, 8(11), 2256–2267.

    CAS  Google Scholar 

  • Sastry, S. K., Datta, A. K., & Worobo, R. W. (2000). Ultraviolet light. Kinetics of microbial inactivation for alternative food processing technologies. Journal of Food Science Supplement, 90–92.

  • Schieberle, P., Ofner, S., & Grosch, W. (1990). Evaluation of potent odorants in cucumbers (Cucumis sativus) and muskmelons (Cucumis melo) by aroma extract dilution analysis. Journal of Food Science, 55, 193–195.

    CAS  Google Scholar 

  • Setlow, P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101(3), 514–525.

    CAS  PubMed  Google Scholar 

  • Shah, N. A. K., Shamsudin, R., Rahman, R. A., & Adzahan, N. (2016). Fruit juice production using ultraviolet pasteurization: a review. Beverages, 2, 22–28.

    Google Scholar 

  • Śliwińska, M., Wiśniewska, P., Dymerski, T., Wardencki, W., & Namieśnik, J. (2016). Application of electronic nose based on fast GC for authenticity assessment of Polish homemade liqueurs called nalewka. Food Analytical Methods, 9, 2670–2681.

    Google Scholar 

  • Sommer, R., Lhotsky, M., Haider, T., & Cabaj, A. (2000). UV inactivation, liquid holding recovery, and photoreactivation of E. coli O157 and other pathogenic E. coli strains in water. Journal of Food Protection, 63(8), 1015–1020.

    CAS  PubMed  Google Scholar 

  • Tarazona-Díaz, M. P., Martínez-Sánchez, A., & Aguayo, E. (2017). Preservation of bioactive compounds and quality parameters of watermelon juice enriched with L-Citrulline through short thermal treatment. Journal of Food Quality, 4, 1–10.

    Google Scholar 

  • Tikekar, R. V., Anantheswaran, R. C., Elias, R. J., & Laborde, L. F. (2011). Ultraviolet-induced oxidation of ascorbic acid in a model juice system: identification of degradation products. Journal of Agricultural and Food Chemistry, 59, 8244–8248.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Guo, X., Ma, Y., Zhao, X., & Zhang, C. (2018a). Effect of ultrahigh temperature treatment on qualities of watermelon juice. Food Science & Nutrition, 6, 594–601.

    CAS  Google Scholar 

  • Wang, Y., Li, W., Ma, Y., Zhao, X., & Zhang, C. (2018b). Effect of thermal treatments on quality and aroma of watermelon juice. Journal of Food Quality, 1, 1–7.

    Google Scholar 

  • Zhang, C., Trierweiler, B., Li, W., Butz, P., Xu, Y., Rüfer, C. E., & Zhao, X. (2011). Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chemistry, 126, 254–260.

    CAS  Google Scholar 

  • Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 59, 1–13.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Trojan Technologies for providing valuable guidance in this project.

Funding

This project is funded under the Agriculture and Food Research Initiative (Food Safety Challenge Area), USDA, award numbers: 2015-69003-23117 and 2018-38821-27732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Patras.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendyala, B., Patras, A., Ravi, R. et al. Evaluation of UV-C Irradiation Treatments on Microbial Safety, Ascorbic Acid, and Volatile Aromatics Content of Watermelon Beverage. Food Bioprocess Technol 13, 101–111 (2020). https://doi.org/10.1007/s11947-019-02363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02363-2

Keywords

Navigation