Skip to main content
Log in

Microencapsulation of Myrtus Communis Extracts in Saccharomyces Cerevisiae Cells: Effects on Phenolic Content and Antioxidant Capacity, Physical Characterization and Molecular Docking Analysis

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study investigated the effects of microencapsulating Myrtus communis fruit extracts within intact and plasmolysed Saccharomyces cerevisiae yeast cells on the phenolic compounds and antioxidant capacity of the extracts. Spectroscopic techniques were employed to quantify polyphenols, flavonoids, and tannins, while UPLC-ESI-MS-MS analysis was utilized to identify and quantify phenolic compounds before and after microencapsulation. Molecular docking was conducted to assess the interaction between yeast cell components and the major identified compounds. Microencapsulation was found to result in a diminished content of polyphenols, flavonoids, and tannins. Phenolic compounds showed higher polyphenol content when encapsulated in plasmolysed cells compared to non-plasmolysed yeast cell. Three major compounds were detected in the microcapsules: myricetin, chlorogenic acid, and coumaric acid, with myricetin exhibiting the highest level of interaction with target proteins. FTIR analysis revealed the interaction between phenolic compounds and yeast cell components, while SEM showed aggregation of microcapsules within plasmolysed microcapsules. Encapsulation of myrtle extract in yeast cells preserved cell wall integrity and microcapsule morphology, with superior thermal stability of encapsulated extracts compared to their non-encapsulated counterparts as demonstrated by TGA–DSC analysis. An enhancement in antioxidant activity after encapsulation was also observed, with the highest activity in plasmolysed yeast cell microcapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data produced and/or examined in the course of this study can be obtained from the corresponding author upon request. Additional data related to this research has been included in the supplementary materials.

References

  • Aidi Wannes, W., & Marzouk, B. (2013). Differences between myrtle fruit parts (Myrtus communis var. italica) in phenolics and antioxidant contents. Journal of Food Biochemistry, 37(5), 585–594.

    Article  Google Scholar 

  • Akbarbaglu, Z., Peighambardoust, S. H., Sarabandi, K., & Jafari, S. M. (2021). Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry, 359, 129965.

    Article  PubMed  CAS  Google Scholar 

  • Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152.

    Article  PubMed  Google Scholar 

  • Alifakı, Y. Ö., Şakıyan, Ö., & Isci, A. (2022). Investigation of storage stability, baking stability, and characteristics of freeze-dried cranberrybush (Viburnum opulus L.) fruit microcapsules. Food and Bioprocess Technology, 15(5), 1115–1132.

    Article  Google Scholar 

  • Amensour, M., Sendra, E., Abrini, J., Pérez-Alvarez, J. A., & Fernández-López, J. (2010). Antioxidant activity and total phenolic compounds of myrtle extracts Actividad antioxidante y contenido de compuestos fenólicos totales en extractos de myrtus. CyTA–Journal of Food, 8(2), 95–101.

    Article  CAS  Google Scholar 

  • Ayyaril, S. S., Shanableh, A., Bhattacharjee, S., Rawas-Qalaji, M., Cagliani, R., & Shabib, A. G. (2023). Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results in Engineering, 18, 101094.

    Article  CAS  Google Scholar 

  • Babou, L., Hadidi, L., Grosso, C., Zaidi, F., Valentão, P., & Andrade, P. B. (2016). Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation. European Food Research and Technology, 242, 1447–1457.

    Article  CAS  Google Scholar 

  • Bharadvaja, N., Gautam, S., & Singh, H. (2023). Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Molecular Biology Reports, 50(2), 1817–1828.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, J. R. P., Nelson, G., & Lamb, J. (1998). Microencapsulation in yeast cells. Journal of Microencapsulation, 15(6), 761–773.

    Article  PubMed  CAS  Google Scholar 

  • Bouaoudia-Madi, N., Boulekbache-Makhlouf, L., Madani, K., Silva, A. M., Dairi, S., Oukhmanou-Bensidhoum, S., & Cardoso, S. M. (2019). Optimization of ultrasound-assisted extraction of polyphenols from Myrtus communis L. pericarp. Antioxidants, 8(7), 205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bzducha-Wróbel, A., Błażejak, S., Kawarska, A., Stasiak-Różańska, L., Gientka, I., & Majewska, E. (2014). Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules, 19(12), 20941–20961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Çakmak, M., Bakar, B., Özer, D., Geckil, H., Karatas, F., & Saydam, S. (2021). Investigation of some biochemical parameters of wild and cultured Myrtus communis L. fruits subjected to different conservation methods. Journal of Food Measurement and Characterization, 15, 983–993.

    Article  Google Scholar 

  • Cegledi, E., Garofulić, I. E., Zorić, Z., Roje, M., & Dragović-Uzelac, V. (2022). Effect of spray drying encapsulation on nettle leaf extract powder properties, polyphenols and their bioavailability. Foods, 11(18), 2852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3).

  • Chrzanowski, G. (2020). Saccharomyces cerevisiae—an interesting producer of bioactive plant polyphenolic metabolites. International Journal of Molecular Sciences, 21(19), 7343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Correddu, F., Fancello, F., Chessa, L., Atzori, A. S., Pulina, G., & Nudda, A. (2019). Effects of supplementation with exhausted myrtle berries on rumen function of dairy sheep. Small Ruminant Research, 170, 51–61.

    Article  Google Scholar 

  • Cosme, F., Inês, A., & Vilela, A. (2023). Microbial and commercial enzymes applied in the beverage production process. Fermentation, 9(4), 385.

    Article  CAS  Google Scholar 

  • Cvetković, D. D., Ranitović, A. S., Šeregelj, V. N., Šovljanski, O. L., Vulić, J. J., Jović, B. D., & Pavlović, V. B. (2021). Encapsulation of peach waste extract in Saccharomyces cerevisiae cells. Journal of the Serbian Chemical Society, 86(4), 367–380.

    Article  Google Scholar 

  • D’Urso, G., Sarais, G., Lai, C., Pizza, C., & Montoro, P. (2017). LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). Journal of Berry Research, 7(3), 217–229.

    Article  Google Scholar 

  • Dabbaghi, M. M., Fadaei, M. S., Soleimani Roudi, H., Baradaran Rahimi, V., & Askari, V. R. (2023). A review of the biological effects of Myrtus communis. Physiological Reports, 11(14), e15770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dadkhodazade, E., Khanniri, E., Khorshidian, N., Hosseini, S. M., Mortazavian, A. M., & Moghaddas Kia, E. (2021). Yeast cells for encapsulation of bioactive compounds in food products: A review. Biotechnology Progress, 37(4), e3138.

    PubMed  CAS  Google Scholar 

  • Dadkhodazade, E., Mohammadi, A., Shojaee-Aliabadi, S., Mortazavian, A. M., Mirmoghtadaie, L., & Hosseini, S. M. (2018). Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: Development, characterization and release properties. Food Biophysics, 13, 404–411.

    Article  Google Scholar 

  • Datta, S., Timson, D. J., & Annapure, U. S. (2017). Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. Journal of the Science of Food and Agriculture, 97(9), 3039–3049.

    Article  PubMed  CAS  Google Scholar 

  • De Medeiros, F. G. M., Dupont, S., Beney, L., Roudaut, G., Hoskin, R. T., & da Silva Pedrini, M. R. (2019). Efficient stabilisation of curcumin microencapsulated into yeast cells via osmoporation. Applied Microbiology and Biotechnology, 103, 9659–9672.

    Article  PubMed  Google Scholar 

  • De Nobel, J. G., Klis, F. M., Priem, J., Munnik, T., & Van Den Ende, H. (1990). The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast, 6(6), 491–499.

    Article  PubMed  Google Scholar 

  • Estevinho, B. N., Horciu, I. L., Blaga, A. C., & Rocha, F. (2021). Development of controlled delivery functional systems by microencapsulation of different extracts of plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. Food and Bioprocess Technology, 14(8), 1503–1517.

    Article  CAS  Google Scholar 

  • Fadda, A., & Mulas, M. (2010). Chemical changes during myrtle (Myrtus communis L.) fruit development and ripening. Scientia Horticulturae, 125(3), 477–485.

    Article  CAS  Google Scholar 

  • Giampieri, F., Cianciosi, D., & Forbes-Hernández, T. Y. (2020). Myrtle (Myrtus communis L.) berries, seeds, leaves, and essential oils: New undiscovered sources of natural compounds with promising health benefits. Food Frontiers, 1(3), 276–295.

    Article  Google Scholar 

  • Gonçalves, B., Moeenfard, M., Rocha, F., Alves, A., Estevinho, B. N., & Santos, L. (2017). Microencapsulation of a natural antioxidant from coffee—chlorogenic acid (3-caffeoylquinic acid). Food and Bioprocess Technology, 10, 1521–1530.

    Article  Google Scholar 

  • González de Peredo, A. V., Vázquez-Espinosa, M., Espada-Bellido, E., et al. (2019). Alternative ultrasound-assisted method for the extraction of the bioactive compounds present in myrtle (Myrtus communis L.). Molecules, 24(5), 882.

    Article  Google Scholar 

  • Hacıseferoğulları, H., Özcan, M. M., Arslan, D., & Ünver, A. (2012). Biochemical compositional and technological characterizations of black and white myrtle (Myrtus communis L.) fruits. Journal of Food Science and Technology, 49, 82–88.

    Article  PubMed  Google Scholar 

  • Hassan, H. M. (2011). Antioxidant and immunostimulating activities of yeast (Saccharomyces cerevisiae) autolysates. World Applied Sciences Journal, 15(8), 1110–1119.

    CAS  Google Scholar 

  • Hennia, A., Miguel, M. G., & Nemmiche, S. (2018). Antioxidant activity of myrtus communis l. and myrtus nivellei batt. & trab. extracts: A brief review. Medicines, 5(3), 89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hromádková, Z., Ebringerová, A., Sasinková, V., Šandula, J., & Hřı́balová, V., & Omelková, J. (2003). Influence of the drying method on the physical properties and immunomodulatory activity of the particulate (1→ 3)-β-D-glucan from Saccharomyces cerevisiae. Carbohydrate Polymers, 51(1), 9–15.

    Article  Google Scholar 

  • Huang, Y., Stonehouse, A., & Abeykoon, C. (2023). Encapsulation methods for phase change materials–A critical review. International Journal of Heat and Mass Transfer, 200, 123458.

    Article  CAS  Google Scholar 

  • Jabri, M. A., Rtibi, K., Sakly, M., Marzouki, L., & Sebai, H. (2016). Role of gastrointestinal motility inhibition and antioxidant properties of myrtle berries (Myrtus communis L.) juice in diarrhea treatment. Biomedicine & Pharmacotherapy, 84, 1937–1944.

    Article  CAS  Google Scholar 

  • Jabri, M. A., Marzouki, L., & Sebai, H. (2018). Ethnobotanical, phytochemical and therapeutic effects of Myrtus communis L. berries seeds on gastrointestinal tract diseases: A review. Archives of physiology and biochemistry, 124(5), 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Jafari, Y., Sabahi, H., & Rahaie, M. (2016). Stability and loading properties of curcumin encapsulated in Chlorella vulgaris. Food Chemistry, 211, 700–706.

    Article  PubMed  CAS  Google Scholar 

  • Jamshidi-Kia, F., Lorigooini, Z., Asgari, S., & Saeidi, K. (2018). Iranian species of Verbascum: A review of botany, phytochemistry, and pharmacological effects. Toxin Reviews, 38, 255–262.

    Article  Google Scholar 

  • Jara-Quijada, E., Pérez-Won, M., Tabilo-Munizaga, G., Lemus-Mondaca, R., González-Cavieres, L., Palma-Acevedo, A., & Herrera-Lavados, C. (2023). Liposomes loaded with green tea polyphenols—Optimization, characterization, and release kinetics under conventional heating and pulsed electric fields. Food and Bioprocess Technology, 1–13.

  • Jensen, L. T., Sanchez, R. J., Srinivasan, C., Valentine, J. S., & Culotta, V. C. (2004). Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly genes and oxidative stress relevant to Cu, Zn superoxide dismutase. Journal of Biological Chemistry, 279(29), 29938–29943.

    Article  PubMed  CAS  Google Scholar 

  • Kalinina, I., Fatkullin, R., Naumenko, N., Ruskina, A., Popova, N., & Naumenko, E. (2022). Increasing the efficiency of taxifolin encapsulation in Saccharomyces cerevisiae yeast cells based on ultrasonic microstructuring. Fermentation, 8(8), 378.

    Article  CAS  Google Scholar 

  • Karaman, K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chemistry, 313, 126129.

    Article  PubMed  Google Scholar 

  • Kavetsou, E., Koutsoukos, S., Daferera, D., Polissiou, M. G., Karagiannis, D., Perdikis, D. C., & Detsi, A. (2019). Encapsulation of Mentha pulegium essential oil in yeast cell microcarriers: An approach to environmentally friendly pesticides. Journal of Agricultural and Food Chemistry, 67(17), 4746–4753.

    Article  PubMed  CAS  Google Scholar 

  • Kavosi, M., Mohammadi, A., Shojaee-Aliabadi, S., Khaksar, R., & Hosseini, S. M. (2018). Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules. Journal of the Science of Food and Agriculture, 98(7), 2490–2497.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. H., Ki, M. R., Min, K. H., & Pack, S. P. (2023). Advanced delivery system of polyphenols for effective cancer prevention and therapy. Antioxidants, 12(5), 1048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koksal, E., Gode, F., Ozaltin, K., Karakurt, I., Suly, P., & Saha, P. (2023). Controlled release of vitamin U from microencapsulated brassica oleracea L. var. capitata extract for peptic ulcer treatment. Food and Bioprocess Technology, 16(3), 677–689.

    Article  CAS  Google Scholar 

  • Kurek, M. A., Majek, M., Onopiuk, A., Szpicer, A., Napiórkowska, A., & Samborska, K. (2023). Encapsulation of anthocyanins from chokeberry (Aronia melanocarpa) with plazmolyzed yeast cells of different species. Food and Bioproducts Processing, 137, 84–92.

    Article  CAS  Google Scholar 

  • Laib, I., Kehal, F., Arris, M., Maameri, M. I., Lachlah, H., Bensouici, C., & Barkat, M. (2021). Effet de la digestion gastro-intestinale in vitro sur les composés phénoliques et l’activité antioxydante du thé vert Camellia sinensis L. issu de l’agriculture biologique. Nutrition Clinique et Métabolisme, 35(3), 212–221.

    Article  Google Scholar 

  • Laib, I., Eddine Laib, D., Semouma, D., Cheriet, N., Aouzal, B., Barkat, M., & Falouti, H. (2023). Optimization of extraction and study of the in vitro static simulation of INFOGEST gastrointestinal digestion and in vitro colonic fermentation on the phenolic compounds of dandelion and their antioxidant activities. Journal of Food Measurement and Characterization, 1–23.

  • Li, X., Ding, L., Li, X., & Zhu, Y. (2020). Abundance, diversity, and structure of Geobacteraceae community in paddy soil under long-term fertilization practices. Applied Soil Ecology, 153, 103577.

    Article  Google Scholar 

  • Liu, S., Tao, M., & Huang, K. (2021). Encapsulation of Mānuka essential oil in yeast microcarriers for enhanced thermal stability and antimicrobial activity. Food and Bioprocess Technology, 14, 2195–2206.

    Article  CAS  Google Scholar 

  • Lopes, M. R., Lara, C. A., Moura, M. E., Uetanabaro, A. P. T., Morais, P. B., Vital, M. J., & Rosa, C. A. (2018). Characterisation of the diversity and physiology of cellobiose-fermenting yeasts isolated from rotting wood in Brazilian ecosystems. Fungal Biology, 122(7), 668–676.

    Article  PubMed  CAS  Google Scholar 

  • Madrigal-Chávez, R., Ruíz-Pompa, K., Márquez-López, A., Valencia Flores, D. C., Chávez-Parga, M. D. C., & González-Hernández, J. C. (2023). Optimization of the ellagic acid synthesis process at the bioreactor level using non-conventional yeasts. Brazilian Journal of Pharmaceutical Sciences, 59, e21508.

    Article  Google Scholar 

  • Maeta, K., Nomura, W., Takatsume, Y., Izawa, S., & Inoue, Y. (2007). Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeasts. Applied and Environmental Microbiology, 73(2), 572–580.

    Article  PubMed  CAS  Google Scholar 

  • Maldini, M., Chessa, M., Petretto, G. L., Montoro, P., Rourke, J. P., Foddai, M., & Pintore, G. (2016). Profiling and simultaneous quantitative determination of anthocyanins in wild Myrtus communis L. berries from different geographical areas in sardinia and their comparative evaluation. Phytochemical Analysis, 27(5), 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Martins, C. C., Kahmann, A., Anzanello, M. J., Rodrigues, R. C., Rodrigues, E., & Mercali, G. D. (2023). Acid hydrolysis conditions do affect the non-extractable phenolic compounds composition from grape peel and seed. Food Research International, 174, 113636.

    Article  PubMed  CAS  Google Scholar 

  • Messaoud, C., & Boussaid, M. (2011). Myrtus communis berry color morphs: A comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities. Chemistry & Biodiversity, 8(2), 300–310.

    Article  CAS  Google Scholar 

  • Mohsin, G. F., Schmitt, F. J., Kanzler, C., Hoehl, A., & Hornemann, A. (2019). PCA-based identification and differentiation of FTIR data from model melanoidins with specific molecular compositions. Food Chemistry, 281, 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds. A Review. Pharmaceutics, 3(4), 793–829.

    Article  PubMed  CAS  Google Scholar 

  • Neuenfeldt, N. H., de Moraes, D. P., de Deus, C., Barcia, M. T., & de Menezes, C. R. (2022). Blueberry phenolic composition and improved stability by microencapsulation. Food and Bioprocess Technology, 15(4), 750–767.

    Article  CAS  Google Scholar 

  • Nguyen, T. T., Phan-Thi, H., Pham-Hoang, B. N., Ho, P. T., Tran, T. T. T., & Waché, Y. (2018). Encapsulation of Hibiscus sabdariffa L. anthocyanins as natural colours in yeast. Food Research International, 107, 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Normand, V., Dardelle, G., Bouquerand, P. E., Nicolas, L., & Johnston, D. J. (2005). Flavor encapsulation in yeasts: Limonene used as a model system for characterization of the release mechanism. Journal of Agricultural and Food Chemistry, 53(19), 7532–7543.

    Article  PubMed  CAS  Google Scholar 

  • Novák, M., Synytsya, A., Gedeon, O., Slepička, P., Procházka, V., Synytsya, A., & Čopíková, J. (2012). Yeast β (1–3),(1–6)-d-glucan films: Preparation and characterization of some structural and physical properties. Carbohydrate Polymers, 87(4), 2496–2504.

    Article  Google Scholar 

  • Onuh, J. O., Dawkins, N. L., & Aluko, R. E. (2023). Cardiovascular disease protective properties of blueberry polyphenols (Vaccinium corymbosum): A concise review. Food Production, Processing and Nutrition, 5(1), 27.

    Article  CAS  Google Scholar 

  • Oracz, J., & Zyzelewicz, D. (2019). In vitro antioxidant activity and ftir characterization of high-molecular weight melanoidin fractions from different types of cocoa beans. Antioxidants, 8(11), 560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oyaizu, M. (1986). Studies of products browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44, 307–315.

    CAS  Google Scholar 

  • Özcan, M. M., Al Juhaimi, F., Ahmed, I. A. M., Babiker, E. E., & Ghafoor, K. (2020). Antioxidant activity, fatty acid composition, phenolic compounds and mineral contents of stem, leave and fruits of two morphs of wild myrtle plants. Journal of Food Measurement and Characterization, 14, 1376–1382.

    Article  Google Scholar 

  • Özyürek, M., Güngör, N., Baki, S., Güçlü, K., & Apak, R. (2012). Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Analytical Chemistry, 84(18), 8052–8059.

    Article  PubMed  Google Scholar 

  • Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011a). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125(3), 892–902.

    Article  CAS  Google Scholar 

  • Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011b). Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food Chemistry, 125(3), 913–922.

    Article  CAS  Google Scholar 

  • Paramera, E. I., Karathanos, V. T., & Konteles, S. J. (2023). Yeast cells and yeast-based materials for microencapsulation. Microencapsulation in the food industry (pp. 343–365). Academic Press.

    Chapter  Google Scholar 

  • Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396(1–2), 153–166.

    Article  CAS  Google Scholar 

  • Peltzer, M. A., Salvay, A. G., Delgado, J. F., de la Osa, O., & Wagner, J. R. (2018). Use of residual yeast cell wall for new biobased materials production: Effect of plasticization on film properties. Food and Bioprocess Technology, 11, 1995–2007.

    Article  CAS  Google Scholar 

  • Pereira, P., Cebola, M. J., Oliveira, M. C., & Bernardo-Gil, M. G. (2016). Supercritical fluid extraction vs conventional extraction of myrtle leaves and berries: Comparison of antioxidant activity and identification of bioactive compounds. The Journal of Supercritical Fluids, 113, 1–9.

    Article  CAS  Google Scholar 

  • Pereira, P., Cebola, M. J., Oliveira, M. C., & Bernardo Gil, M. G. (2017). Antioxidant capacity and identification of bioactive compounds of Myrtus communis L. extract obtained by ultrasound-assisted extraction. Journal of Food Science and Technology, 54, 4362–4369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pham-Hoang, B. N., Romero-Guido, C., Phan-Thi, H., & Waché, Y. (2013). Encapsulation in a natural, preformed, multi-component and complex capsule: Yeast cells. Applied Microbiology and Biotechnology, 97, 6635–6645.

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska, M., & Masek, A. (2015). Saccharomyces cerevisiae cell wall components as tools for ochratoxin A decontamination. Toxins, 7(4), 1151–1162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plavcová, Z., Šalamúnová, P., Saloň, I., Štěpánek, F., Hanuš, J., & Hošek, J. (2019). Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. International Journal of Pharmaceutics, 568, 118532.

    Article  PubMed  Google Scholar 

  • Price, M. L., Van Scoyoc, S., & Butler, L. G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry, 26(5), 1214–1218.

    Article  CAS  Google Scholar 

  • Pu, C., & Tang, W. (2017). Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement. Food Chemistry, 235, 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, L., Zhang, M., Adhikari, B., & Chang, L. (2023). Microencapsulation of rose essential oil using perilla protein isolate-sodium alginate complex coacervates and application of microcapsules to preserve ground beef. Food and Bioprocess Technology, 16(2), 368–381.

    Article  CAS  Google Scholar 

  • Rainha, J., Gomes, D., Rodrigues, L. R., & Rodrigues, J. L. (2020). Synthetic biology approaches to engineer Saccharomyces cerevisiae towards the industrial production of valuable polyphenolic compounds. Life, 10(5), 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raj, G. B., & Dash, K. K. (2022). Microencapsulation of dragon fruit peel extract by freeze-drying using hydrocolloids: Optimization by hybrid artificial neural network and genetic algorithm. Food and Bioprocess Technology, 15(9), 2035–2049.

    Article  CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  • Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386–1394.

    Article  CAS  Google Scholar 

  • Rostami, M. R., Yousefi, M., Khezerlou, A., Mohammadi, M. A., & Jafari, S. M. (2019). Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids, 97, 105170.

    Article  CAS  Google Scholar 

  • Ruffoni, B., Mascarello, C., & Savona, M. (2009). In vitro propagation of ornamental Myrtus (Myrtus communis). Protocols for In Vitro Propagation of Ornamental Plants (pp. 257–269). Humana Press.

    Google Scholar 

  • Safdar, M. N., Kausar, T., & Nadeem, M. (2017). Comparison of ultrasound and maceration techniques for the extraction of polyphenols from the mango peel. Journal of Food Processing and Preservation, 41(4), e13028.

    Article  Google Scholar 

  • Salari, R., Bazzaz, B. S. F., Rajabi, O., & Khashyarmanesh, Z. (2013). New aspects of Saccharomyces cerevisiae as a novel carrier for berberine. DARU Journal of Pharmaceutical Sciences, 21, 1–8.

    Article  Google Scholar 

  • Salari, R., Rajabi, O., Khashyarmanesh, Z., Najafi, M. F., & Bazzaz, B. S. F. (2015). Characterization of encapsulated berberine in yeast cells of Saccharomyces cerevisiae. Iranian Journal of Pharmaceutical Research: IJPR, 14(4), 1247.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Salmon, J. M. (2006). Interactions between yeast, oxygen and polyphenols during alcoholic fermentations: Practical implications. LWT-Food Science and Technology, 39(9), 959–965.

    Article  CAS  Google Scholar 

  • Şan, B., Yildirim, A. N., Polat, M., & Yildirim, F. (2015). Chemical compositions of Myrtle (Myrtus communis L.) genotypes having bluish-black and yellowish-white fruits. Erwerbs-Obstbau, 57(4), 203–210.

    Article  Google Scholar 

  • Scorrano, S., Lazzoi, M. R., Mergola, L., Di Bello, M. P., Del Sole, R., & Vasapollo, G. (2017). Anthocyanins profile by Q-TOF LC/MS in Myrtus communis berries from Salento Area. Food Analytical Methods, 10, 2404–2411.

    Article  Google Scholar 

  • Serio, A., Chaves-López, C., Martuscelli, M., Mazzarrino, G., Di Mattia, C., & Paparella, A. (2014). Application of central composite design to evaluate the antilisterial activity of hydro-alcohol berry extract of Myrtus communis L. LWT-Food Science and Technology, 58(1), 116–123.

    Article  CAS  Google Scholar 

  • Shen, D., Labreche, F., Wu, C., Fan, G., Li, T., Dou, J., & Zhu, J. (2022). Ultrasound-assisted adsorption/desorption of jujube peel flavonoids using macroporous resins. Food Chemistry, 368, 130800.

    Article  PubMed  CAS  Google Scholar 

  • Shi, G., Rao, L., Yu, H., Xiang, H., Yang, H., & Ji, R. (2008). Stabilization and encapsulation of photosensitive resveratrol within yeast cell. International Journal of Pharmaceutics, 349(1–2), 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Siracusa, L., Napoli, E., Tuttolomondo, T., Licata, M., La Bella, S., Gennaro, M. C., & Ruberto, G. (2019). A two- year bio-agronomic and chemotaxonomic evaluation of wild sicilian myrtle (Myrtus communis L.) berries and leaves. Chemistry & Biodiversity, 16(3), e1800575.

    Article  Google Scholar 

  • Soto, E. R., Rus, F., Mirza, Z., & Ostroff, G. R. (2023). Yeast particles for encapsulation of terpenes and essential oils. Molecules, 28(5), 2273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephen, D. W., & Jamieson, D. J. (1996). Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiology Letters, 141(2–3), 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Strawn, G., Wong, R., Young, B., Davey, M., Nislow, C., Conibear, E., & Mayor, T. (2023). Genome-wide screen identifies new set of genes for improved heterologous laccase expression in Saccharomyces cerevisiae. bioRxiv, 2023–07.

  • Subramani, T., & Ganapathyswamy, H. (2020). An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. Journal of Food Science and Technology, 57(10), 3545–3555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sultana, A., Tanaka, Y., Fushimi, Y., & Yoshii, H. (2018). Stability and release behavior of encapsulated flavor from spray-dried Saccharomyces cerevisiae and maltodextrin powder. Food Research International, 106, 809–816.

    Article  PubMed  CAS  Google Scholar 

  • Szydłowska-Czerniak, A., Dianoczki, C., Recseg, K., Karlovits, G., & Szłyk, E. (2008). Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta, 76(4), 899–905.

    Article  PubMed  Google Scholar 

  • Tan, C., Huang, M., McClements, D. J., Sun, B., & Wang, J. (2021). Yeast cell-derived delivery systems for bioactives. Trends in Food Science & Technology, 118, 362–373.

    Article  CAS  Google Scholar 

  • Tavares, L., Barros, H. L. B., Vaghetti, J. C. P., & Noreña, C. P. Z. (2019). Microencapsulation of garlic extract by complex coacervation using whey protein isolate/chitosan and gum arabic/chitosan as wall materials: Influence of anionic biopolymers on the physicochemical and structural properties of microparticles. Food and Bioprocess Technology, 12, 2093–2106.

    Article  CAS  Google Scholar 

  • Uclaray, C. C., Vidallon, M. L. P., Almeda, R. A., Cumagun, C. J. R., Reyes, C. T., & Rodriguez, E. B. (2022). Encapsulation of wild oregano, Plectranthus amboinicus (Lour.) Spreng, phenolic extract in baker’s yeast for the postharvest control of anthracnose in papaya. Journal of the Science of Food and Agriculture, 102(11), 4657–4667.

    Article  PubMed  CAS  Google Scholar 

  • Verma, V., & Aggarwal, R. K. (2020). A comparative analysis of similarity measures akin to the Jaccard index in collaborative recommendations: Empirical and theoretical perspective. Social Network Analysis and Mining, 10, 1–16.

    Article  Google Scholar 

  • Wang, L. L., & Xiong, Y. L. (2005). Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. Journal of Agricultural and Food Chemistry, 53(23), 9186–9192.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Zhang, Y., Zhang, L., & Ding, Y. (2009). Multiple conformation transitions of triple helical lentinan in DMSO/water by microcalorimetry. The Journal of Physical Chemistry B, 113(29), 9915–9923.

    Article  PubMed  CAS  Google Scholar 

  • Wanjun, T., Cunxin, W., & Donghua, C. (2005). Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation and Stability, 87(3), 389–394.

    Article  Google Scholar 

  • Wannes, W. A., & Marzouk, B. (2016). Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities. Journal of Food and Drug Analysis, 24(2), 316–323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waterhouse, A. (1999). Viticulture. Folin-Ciocalteau Micro Method for Total Phenol in Wine, 28, 1–3.

    Google Scholar 

  • Wilkowska, A., Ambroziak, W., Czyzowska, A., & Adamiec, J. (2016). Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Polish Journal of Food and Nutrition Sciences, 66(1), 11.

    Article  CAS  Google Scholar 

  • Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60–69.

    Article  Google Scholar 

  • Xie, Z., Zhou, J., Wang, J., François-Xavier, C. P., & Wintgens, T. (2019). Novel Fenton-like catalyst γ-Cu-Al2O3-Bi12O15Cl6 with electron-poor Cu centre and electron-rich Bi centre for enhancement of phenolic compounds degradation and H2O2 utilization: The synergistic effects of σ-Cu-ligand, dual-reaction centres and oxygen vacancies. Applied Catalysis B: Environmental, 253, 28–40.

    Article  CAS  Google Scholar 

  • Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 6(2), 115–123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yekdane, N., & Goli, S. A. H. (2019). Effect of pomegranate juice on characteristics and oxidative stability of microencapsulated pomegranate seed oil using spray drying. Food and Bioprocess Technology, 12, 1614–1625.

    Article  CAS  Google Scholar 

  • Young, S., & Nitin, N. (2019). Thermal and oxidative stability of curcumin encapsulated in yeast microcarriers. Food Chemistry, 275, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Zabot, G. L., Schaefer Rodrigues, F., Ody, P., et al. (2022). Encapsulation of bioactive compounds for food and agricultural applications. Polymers, 14(19), 4194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zafar, M. N., Abuwatfa, W. H., & Husseini, G. A. (2023). Acoustically-activated liposomal nanocarriers to mitigate the side effects of conventional chemotherapy with a focus on emulsion-liposomes. Pharmaceutics, 15(2), 421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research was funded by the Algerian Ministry of Higher Education.

Author information

Authors and Affiliations

Authors

Contributions

Dounyazed SEMOUMA: Conducted the experiments and prepared a draft of the article; Imen LAIB: Supervised the work, performed molecular docking, and interpreted the results. Djamel Eddine LAIB: Schematized the results of FTIR, TGA/DSC, and interpreted the results. Haroun CHENCOUNI: Performed statistical analysis using R software. Youcef RAHMANI: Performed SEM analysis. Fadila FEKRACHE: Conducted sampling and botanical identification of the species. Azzeddine HADEF: Mapped the sampling site. Chawki BENSOUICI: Measured phenolic compounds and evaluated antioxidant activity. Malika BARKAT: Revised the article and supervised the work.

Corresponding author

Correspondence to Imen Laib.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semouma, D., Laib, I., Laib, D.E. et al. Microencapsulation of Myrtus Communis Extracts in Saccharomyces Cerevisiae Cells: Effects on Phenolic Content and Antioxidant Capacity, Physical Characterization and Molecular Docking Analysis. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-023-03316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03316-6

Keywords

Navigation