Skip to main content

Advertisement

Log in

Natural polyphenols: a promising bioactive compounds for skin care and cosmetics

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The physiological and morphological aspects of skin suffer from frequent change. Numerous internal and external factors have direct impact on inducing various skin problems like inflammation, aging, cancer, oxidative stress, hyperpigmentation etc. The use of plant polyphenols as a photo-ecting agent is gaining popularity nowadays. Polyphenols are known to enhance endogenic antioxidant system of skin thereby preventing various skin diseases. The biological activity of plant polyphenols is dependent on their physicochemical properties for overcoming the epidermal barriers to reach the specific receptor. Several evidences have reported the vital role polyphenols in mitigating adverse skin problems and reverting back the healthy skin condition. The interest in plant derived skin care products is emerging due to the changing notion of people to shift their focus towards use of plant-based products. The present review draws an attention to uncover the protective role of polyphenols in prevention of various skin problems. Several in vitro and in vivo studies have been summarized that claims the efficacious nature of plant extract having dermatological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MMP:

Matrix metalloproteinase

UV rays:

Ultraviolet rays

ROS:

Reactive oxygen species

EGCG:

Epigallo catechin-3-gallate

NO:

Nitric oxide

H2O2 :

Hydrogen peroxide

COX-2:

Cyclooxygenase-2

GTP:

Green tea polyphenol

EC:

Epicatechin

ECG:

(-) Epicatechin-3-gallate

IL:

Interleukin

TNF:

Tumor necrosis factor

MAPK:

Mitogen-activated protein kinase

iNOS:

Inducible nitric oxide synthase

TGF:

Transforming growth factor

AP-1:

Activator protein 1

HaCaT:

Human keratinocyte cell culture

TGM:

Transglutaminase

FLG:

Filaggrin gene

HAS:

Hyaluronic acid synthase

MPO:

Myeloperoxidase

SOD:

Superoxide dismutase

CAT:

Catalase

TRP:

Tyrosinase related protein

DNA:

Deoxyribonucleic acid

References

  1. Gallo RL (2017) Human skin is the largest epithelial surface for interaction with microbes. J Investig Dermatol 137(6):1213–1214

    Article  CAS  Google Scholar 

  2. Zouboulis CC, Ganceviciene R, Liakou AI, Theodoridis A, Elewa R, Makrantonaki E (2019) Aesthetic aspects of skin aging, prevention, and local treatment. Clin Dermatol 37(4):365–372. https://doi.org/10.1016/j.clindermatol.2019.04.002

    Article  Google Scholar 

  3. Zedan H, Abdel-Motaleb AA, Kassem NMA, Hafeez HAA, Hussein MRA (2015) Low glutathione peroxidase activity levels in patients with vitiligo. J Cutan Med Surg 19(2):144–148

    Article  CAS  Google Scholar 

  4. Ratz-Łyko A, Arct J, Majewski S, Pytkowska K (2015) Influence of polyphenols on the physiological processes in the skin. Phytother Res 29(4):509–517. https://doi.org/10.1002/ptr.5289

    Article  CAS  Google Scholar 

  5. Eskandari M, Rembiesa J, Startaitė L, Holefors A, Valančiūtė A, Faridbod F, Ganjali MR, Engblom J, Ruzgas T (2019) Polyphenol-hydrogen peroxide reactions in skin: in vitro model relevant to study ROS reactions at inflammation. Anal Chim Acta 1075:91–97

    Article  CAS  Google Scholar 

  6. Afaq F, Katiyar SK (2011) Polyphenols: skin photoprotection and inhibition of photocarcinogenesis. Mini Rev Med Chem 11(14):1200–1215. https://doi.org/10.2174/13895575111091200

    Article  CAS  Google Scholar 

  7. Moreira LC, de Ávila RI, Veloso D et al (2017) In vitro safety and efficacy evaluations of a complex botanical mixture of Eugenia dysenterica DC. (Myrtaceae): prospects for developing a new dermocosmetic product. Toxicol In Vitro 45:397–408

    Article  CAS  Google Scholar 

  8. de Lima Cherubim DJ, Buzanello Martins CV, Oliveira Fariña L, da Silva de Lucca RA (2020) Polyphenols as natural antioxidants in cosmetics applications. J Cosmet Dermatol 19(1):33–37

    Article  Google Scholar 

  9. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368. https://doi.org/10.4161/psb.5.4.10871

    Article  CAS  Google Scholar 

  10. Chiang HS, Wu WB, Fang JY, Chen BH, Kao TH, Chen YT, Huang CC, Hung CF (2007) UVB-protective effects of isoflavone extracts from soybean cake in human keratinocytes. Int J Mol Sci 8:651–661

    Article  CAS  Google Scholar 

  11. Wang XF, Huang YF, Wang L, Xu LQ, Yu XT, Liu YH, Li CL, Zhan JY, Su ZR, Chen JN, Zeng HF (2016) Overec activity of pogostone against UV-induced skin premature aging in mice. Exp Gerontol 77:76–86

    Article  Google Scholar 

  12. Yan Z, Zhong Y, Duan Y, Chen Q, Li F (2020) Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr 6(2):115–123. https://doi.org/10.1016/j.aninu.2020.01.001

    Article  Google Scholar 

  13. Kundu JK, Surh YJ (2007) Epigallocatechin gallate inhibits phorbol ester-induced activation of NF-ΚB and CREB in mouse skin role of P38 MAPK. Ann N Y Acad Sci 1095:504–512. https://doi.org/10.1196/annals.1397.054

    Article  CAS  Google Scholar 

  14. Liu L, Guo P, Wang P, Zheng S, Qu Z, Liu N (2021) The review of anti-aging mechanism of polyphenols on Caenorhabditis elegans. Front Bioeng Biotechnol 1:635768. https://doi.org/10.3389/fbioe.2021.635768

    Article  Google Scholar 

  15. Hanamura T, Uchida E, Aoki H (2008) Skin-lightening effect of a polyphenol extract from Acerola (Malpighia emarginata DC.) fruit on UV-induced pigmentation. Biosci Biotechnol Biochem 72(12):3211–3218. https://doi.org/10.1271/bbb.80421

    Article  CAS  Google Scholar 

  16. Saric S, Notay M, Sivamani RK (2016) Green tea and other tea polyphenols: effects on sebum production and acne vulgaris. Antioxidants (Basel) 6(1):2. https://doi.org/10.3390/antiox6010002

    Article  CAS  Google Scholar 

  17. Semkova M, Hsuan J (2021) TGFβ-1 induced cross-linking of the extracellular matrix of primary human dermal fibroblasts. Int J Mol Sci 22:984

    Article  CAS  Google Scholar 

  18. Xia EQ, Deng GF, Guo YJ, Li HB (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11(2):622–46. https://doi.org/10.3390/ijms11020622

    Article  CAS  Google Scholar 

  19. Truong VL, Jeong WS (2021) Cellular defensive mechanisms of tea polyphenols: structure-activity relationship. Int J Mol Sci 22(17):9109. https://doi.org/10.3390/ijms22179109

    Article  CAS  Google Scholar 

  20. Shi HP, Most D, Efron DT, Tantry U, Fischel MH, Barbul A (2001) The role of iNOS in wound healing. Surgery 130(2):225–259. https://doi.org/10.1067/msy.2001.115837 (Erratum in: Surgery 2001 Nov;130(5):808)

    Article  CAS  Google Scholar 

  21. Feily A, Yaghoobi R, Reza M (2009) The potential utility of green tea extract as a novel treatment for cutaneous leishmanasis. J Altern Complement Med 5:815–816

    Article  Google Scholar 

  22. Menaa F, Menaa A, Tréton J (2013) Polyphenols against skin aging. In: Polyphenols in human health and disease. Elsevier Inc., Amsterdam, pp 819–830. https://doi.org/10.1016/B978-0-12-398456-2.00063-3

  23. Hanamura T, Uchida E, Aoki H (2008) Skin-lightening effect of a polyphenol extract from Acerola (Malpighia emarginata DC.) fruit on UV-induced pigmentation. Biosci Biotechnol Biochem 72(12):3211–3218

    Article  CAS  Google Scholar 

  24. Smeriglio A, D’Angelo V, Denaro M, Trombetta D, Raimondo F, Germanò M (2019) Polyphenol characterization, antioxidant and skin whitening properties of Alnus cordata (Loisel.) Duby stem bark. Chem Biodivers. https://doi.org/10.1002/cbdv.201900314

    Article  Google Scholar 

  25. Kalaivani T, Mathew L (2010) Free radical scavenging activity from leaves of Acacia nilotica (L.) Wild. Ex Delile, an Indian medicinal tree. Food Chem Toxicol 48:298–305. https://doi.org/10.1016/j.fct.2009.10.013

    Article  CAS  Google Scholar 

  26. Haliloglu Y, Ozek T, Tekin M, Goger F, Can Baser KH, Ozek G, Can Baser H (2017) Phytochemicals, antioxidant, and antityrosinase activities of Achillea sivasica Çelik and Akpulat. Int J Food Prop. https://doi.org/10.1080/10942912.2017.1308954

    Article  Google Scholar 

  27. Zielińska A, Matkowski (2014) Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev 13:391–416. https://doi.org/10.1007/s11101-014-9349-1

    Article  CAS  Google Scholar 

  28. Sabale V, Kunjwani H, Sabale P (2011) Formulation and in vitro evaluation of the topical antiageing preparation of the fruit of Benincasa hispida. J Ayurveda Integr Med 2:124–128

    Article  Google Scholar 

  29. OyetakinWhite P, Tribout H, Baron E (2012) Protective mechanisms of green tea polyphenols in skin. Oxid Med Cell Longev 2012:560682. https://doi.org/10.1155/2012/560682

    Article  CAS  Google Scholar 

  30. Kim YJ, Cha HJ, Nam KH, Yoon Y, Lee H, An S (2011) Centella asiatica extracts modulate hydrogen peroxide-induced senescence in human dermal fibroblasts. Exp Dermatol 20:998–1003. https://doi.org/10.1111/j.1600-0625.2011.01388.x

    Article  CAS  Google Scholar 

  31. Affonso RCL, Voytena APL, Fanan S, Pitz H, Coelho DS, Horstmann AL, Pereira A, Uarrota VG, Hillmann MC, Varela LAC, Ribeiro-Do-Valle RM, Maraschin M, Phytochemical, Composition (2016) Antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxid Med Cell Longev. https://doi.org/10.1155/2016/1923754

    Article  Google Scholar 

  32. Park G, Kim HG, Kim YO, Park SH, Kim SY, Oh MS (2012) Coriandrum sativum L. protects human keratinocytes from oxidative stress by regulating oxidative defense systems. Skin Pharmacol Physiol 25:93–99. https://doi.org/10.1159/000335257

    Article  CAS  Google Scholar 

  33. Jurikova T, Sochor J, Rop O, Mlcek J, Balla S, Szekeres L, Adam V, Kizek R (2012) Polyphenolic profile and biological activity of chinese hawthorn (Crataegus pinnatifida Bunge) fruits. Molecules 17(12):14490–14509. https://doi.org/10.3390/molecules171214490

    Article  CAS  Google Scholar 

  34. Moon HI, Kim T, Cho HS, Kim EK (2010) Identification of potential and selective collagenase, gelatinase inhibitors from Crataegus pinnatifida. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2009.12.059

    Article  Google Scholar 

  35. Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, Sahebkar A (2019) Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol 234(2):1165–1178. https://doi.org/10.1002/jcp.27096

    Article  CAS  Google Scholar 

  36. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L (2015) Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 10(5):1615–1623. https://doi.org/10.3892/etm.2015.2749

    Article  CAS  Google Scholar 

  37. Petrova A, Davids LM, Rautenbach F, Marnewick JL (2011) Photoprotection by honeybush extracts, hesperidin and mangiferin against UVB-induced skin damage in SKH-1 mice. J Photochem Photobiol B 103(2):126–139. https://doi.org/10.1016/j.jphotobiol.2011.02.020

    Article  CAS  Google Scholar 

  38. Chaikul P, Kanlayavattanakul M, Somkumnerd J, Lourith N (2021) Phyllanthus emblica L. (amla) branch: a safe and effective ingredient against skin aging. J Tradit Complement Med 11(5):390–399. https://doi.org/10.1016/j.jtcme.2021.02.004

    Article  Google Scholar 

  39. Moreira LC, de Ávila RI, Veloso DFMC, Pedrosa TN, Lima ES, do Couto RO, Lima EM, Batista AC, de Paula JR, Valadares MC, (2017) In vitro safety and efficacy evaluations of a complex botanical mixture of Eugenia dysenterica DC. (Myrtaceae): Prospects for developing a new dermocosmetic product. Toxicol In Vitro 45(Pt 3):397–408. https://doi.org/10.1016/j.tiv.2017.04.002

    Article  CAS  Google Scholar 

  40. He W, Huang B (2011) A review of chemistry and bioactivities of a medicinal spice: Foeniculum vulgare. J Med Plants Res 5:3595–3600

    CAS  Google Scholar 

  41. Gasparrini M, Forbes-Hernandez TY, Afrin S, Reboredo-Rodriguez P, Cianciosi D, Mezzetti B, Quiles JL, Bompadre S, Battino M, Giampieri F (2017) Strawberry-based cosmetic formulations protect human dermal fibroblasts against UVA-induced damage. Nutrients 9(6):605. https://doi.org/10.3390/nu9060605

    Article  CAS  Google Scholar 

  42. Kwon DJ, Bae YS, Ju SM, Goh AR, Choi SY, Park J (2011) Casuarinin suppresses TNF-α-induced ICAM-1 expression via blockade of NF-κB activation in HaCaT cells. Biochem Biophys Res Commun 409(4):780–785. https://doi.org/10.1016/j.bbrc.2011.05.088

    Article  CAS  Google Scholar 

  43. Hwang IS, Kim JE, Choi SI, Lee HR, Lee YJ, Jang MJ, Son HJ, Lee HS, Oh CH, Kim BH, Lee SH, Hwang DY (2012) UV radiation-induced skin aging in hairless mice is effectively prevented by oral intake of sea buckthorn (Hippophae rhamnoides L.) fruit blend for 6 weeks through MMP suppression and increase of SOD activity. Int J Mol Med 30(2):392–400. https://doi.org/10.3892/ijmm.2012.1011

    Article  Google Scholar 

  44. Myung DB, Han HS, Shin JS, Park JY, Hwang HJ, Kim HJ, Ahn HS, Lee SH, Lee KT (2019) Hydrangenol isolated from the leaves of Hydrangea serrata attenuates wrinkle formation and repairs skin moisture in UVB-irradiated hairless mice. Nutrients 11(10):2354. https://doi.org/10.3390/nu11102354

    Article  CAS  Google Scholar 

  45. Myung DB, Lee JH, Han HS, Lee KY, Ahn HS, Shin YK, Song E, Kim BH, Lee KH, Lee SH, Lee KT, Myung DB, Lee JH, Han HS, Lee KY, Ahn HS, Shin YK, Song E, Kim BH, Lee KH, Lee SH, Lee KT (2020) Oral intake of Hydrangea serrata (Thunb.) Ser. leaves extract improves wrinkles, hydration, elasticity, texture, and roughness in human skin: a randomized, double-blind, placebo-controlled study. Nutrients 12(6):1588. https://doi.org/10.3390/nu12061588

    Article  CAS  Google Scholar 

  46. Zhu X, Zeng X, Zhang X, Cao W, Wang Y, Chen H, Wang T, Tsai HI, Zhang R, Chang D, He S, Mei L, Shi X (2016) The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine 12(3):623–632. https://doi.org/10.1016/j.nano.2015.10.016

    Article  CAS  Google Scholar 

  47. Wen KC, Chiu HH, Fan PC, Chen CW, Wu SM, Chang JH, Chiang HM (2011) Antioxidant activity of Ixora parviflora in a cell/cell-free system and in UV-exposed human fibroblasts. Molecules 16(7):5735–5752. https://doi.org/10.3390/molecules16075735

    Article  CAS  Google Scholar 

  48. Chiang HM, Chen HC, Lin TJ, Shih IC, Wen KC (2012) Michelia alba extract attenuates UVB-induced expression of matrix metalloproteinases via MAP kinase pathway in human dermal fibroblasts. Food Chem Toxicol 50(12):4260–4269. https://doi.org/10.1016/j.fct.2012.08.018

    Article  CAS  Google Scholar 

  49. Wang HM, Chen CY, Chen CY, Ho ML, Chou YT, Chang HC, Lee CH, Wang CZ, Chu IM (2010) (-)-N-formylanonaine from Michelia alba as a human tyrosinase inhibitor and antioxidant. Bioorg Med Chem 18(14):5241–5247

    Article  CAS  Google Scholar 

  50. Park SH, Yi YS, Kim MY, Cho JY (2019) Antioxidative and antimelanogenesis effect of Momordica charantia methanol extract. Evid Based Complement Altern Med. https://doi.org/10.1155/2019/5091534

    Article  Google Scholar 

  51. Cho Y, Kim KH, Shim JS, Hwang JK (2008) Inhibitory effects of macelignan isolated from Myristica fragrans Houtt. on melanin biosynthesis. Biol Pharm Bull 31(5):986–989. https://doi.org/10.1248/bpb.31.986

    Article  CAS  Google Scholar 

  52. Kang TH, Park HM, Kim YB, Kim H, Kim N, Do JH, Kang C, Cho Y, Kim SY (2009) Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J Ethnopharmacol 123(3):446–451. https://doi.org/10.1016/j.jep.2009.03.022

    Article  CAS  Google Scholar 

  53. Lee HJ, Kim JS, Song MS, Seo HS, Moon C, Kim JC, Jo SK, Jang JS, Kim SH (2009) Photoprotective effect of red ginseng against ultraviolet radiation-induced chronic skin damage in the hairless mouse. Phytother Res 23(3):399–403. https://doi.org/10.1002/ptr.2640

    Article  CAS  Google Scholar 

  54. Jeong D, Park SH, Kim MH, Lee S, Cho YK, Kim YA, Park BJ, Lee J, Kang H, Cho JY (2020) Anti-melanogenic effects of ethanol extracts of the leaves and roots of Patrinia villosa (Thunb.) Juss through their inhibition of CREB and induction of ERK and autophagy. Molecules 25(22):5375. https://doi.org/10.3390/molecules25225375

    Article  CAS  Google Scholar 

  55. Jeong D, Lee J, Park SH, Kim YA, Park BJ, Oh J, Sung GH, Aravinthan A, Kim JH, Kang H, Cho JY (2019) Antiphotoaging and antimelanogenic effects of Penthorum chinense pursh ethanol extract due to antioxidant- and autophagy-inducing properties. Oxid Med Cell Longev 2019:9679731. https://doi.org/10.1155/2019/9679731

    Article  CAS  Google Scholar 

  56. Parrado C, Mascaraque M, Gilaberte Y, Juarranz A, Gonzalez S (2016) Fernblock (Polypodium leucotomos extract): molecular mechanisms and pleiotropic effects in light-related skin conditions, photoaging and skin cancers, a review. Int J Mol Sci 17(7):1026. https://doi.org/10.3390/ijms17071026

    Article  CAS  Google Scholar 

  57. Spagnol CM, Di Filippo LD, Isaac VLB, Correa MA, Salgado HRN (2017) Caffeic acid in dermatological formulations: in vitro release profile and skin absorption. Comb Chem High Throughput Screen 20(8):675–681. https://doi.org/10.2174/1386207320666170602090448

    Article  CAS  Google Scholar 

  58. Turrini E, Ferruzzi L, Fimognari C (2015) Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxid Med Cell Longev 2015:938475. https://doi.org/10.1155/2015/938475

    Article  Google Scholar 

  59. Gabr SA, Alghadir AH (2019) Evaluation of the biological effects of lyophilized hydrophilic extract of Rhus coriaria on myeloperoxidase (MPO) activity, wound healing, and microbial infections of skin wound tissues. Evid Based Complement Alternat Med 2019:5861537. https://doi.org/10.1155/2019/5861537

    Article  Google Scholar 

  60. Nozza E, Melzi G, Marabini L, Marinovich M, Piazza S, Khalilpour S, Dell’Agli M, Sangiovanni E (2020) Rhus coriaria L. fruit extract prevents UV-A-induced genotoxicity and oxidative injury in human microvascular endothelial cells. Antioxidants (Basel) 9(4):292. https://doi.org/10.3390/antiox9040292

    Article  CAS  Google Scholar 

  61. Lee MH, Lin YP, Hsu FL, Zhan GR, Yen KY (2006) Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry 67(12):1262–1270. https://doi.org/10.1016/j.phytochem.2006.05.008

    Article  CAS  Google Scholar 

  62. Scapagnini G, Davinelli S, Di Renzo L, De Lorenzo A, Olarte HH, Micali G, Cicero AF, Gonzalez S (2014) Cocoa bioactive compounds: significance and potential for the maintenance of skin health. Nutrients 6(8):3202–3213. https://doi.org/10.3390/nu6083202

    Article  CAS  Google Scholar 

  63. Ajazuddin, Saraf S (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia 81:680–689. https://doi.org/10.1016/j.fitote.2010.05.001

    Article  CAS  Google Scholar 

  64. Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A (2016) The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 17(2):160. https://doi.org/10.3390/ijms17020160

    Article  CAS  Google Scholar 

  65. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM, Hariharapura RC, Kalthur G, Udupa N, Mutalik S (2017) Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 24(1):61–74

    Article  CAS  Google Scholar 

  66. Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A (2016) The potential of Plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 17(2):160. https://doi.org/10.3390/ijms17020160

    Article  CAS  Google Scholar 

  67. García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, López-Romero JM (2019) Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel) 9(4):638. https://doi.org/10.3390/nano9040638

    Article  CAS  Google Scholar 

  68. Sheng X, Zhu Y, Zhou J, Yan L, Du G, Liu Z, Chen H (2021) Antioxidant effects of caffeic acid lead to protection of Drosophila intestinal stem cell aging. Front Cell Dev Biol 9:735483. https://doi.org/10.3389/fcell.2021.735483

    Article  Google Scholar 

  69. Montenegro L, Parenti C, Turnaturi R, Pasquinucci L (2017) Resveratrol-loaded lipid nanocarriers: correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics 9:58. https://doi.org/10.3390/pharmaceutics9040058

    Article  Google Scholar 

  70. Bose S, Du Y, Takhistov P, Michniak-Kohn B (2013) Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int J Pharm 441:56–66

    Article  CAS  Google Scholar 

  71. Shtay R, Keppler JK, Schrader K, Schwarz K (2019) Encapsulation of (-)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. J Food Eng 244:91–100. https://doi.org/10.1016/j.jfoodeng.2018.09.008

    Article  CAS  Google Scholar 

  72. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM, Hariharapura RC, Kalthur G, Udupa N, Mutalik S (2017) Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 24(1):61–74

    Article  CAS  Google Scholar 

  73. Gumireddy A, Christman R, Kumari D et al (2019) Preparation, characterization, and in vitro evaluation of curcumin- and resveratrol-loaded solid lipid nanoparticles. AAPS PharmSciTech 20:145. https://doi.org/10.1208/s12249-019-1349-4

    Article  CAS  Google Scholar 

  74. Esposito E, Sticozzi C, Ravani L, Drechsler M, Muresan XM, Cervellati F et al (2015) Effect of new curcumin-containing nanostructured lipid dispersions on human keratinocytes proliferative responses. Exp Dermatol 24(6):449–454

    Article  CAS  Google Scholar 

  75. Gupta NK, Dixit VK (2011) Development and evaluation of vesicular system for curcumin delivery. Arch Dermatol Res 303(2):89–101. https://doi.org/10.1007/s00403-010-1096-6

    Article  CAS  Google Scholar 

  76. Aljuffali IA, Lin CH, Yang SC, Alalaiwe A, Fang JY (2022) Nanoencapsulation of tea catechins for enhancing skin absorption and therapeutic efficacy. AAPS PharmSciTech 23(6):187. https://doi.org/10.1208/s12249-022-02344-3

    Article  CAS  Google Scholar 

  77. Jain A, Doppalapudi S, Domb AJ, Khan W (2016) Tacrolimus and curcumin co-loaded liposphere gel: synergistic combination towards management of psoriasis. J Control Release 243:132–145

    Article  CAS  Google Scholar 

  78. Archana A, Sri KV, Madhuri M, Kumar CA (2015) Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chem Sci Trans 4:75–80

    Google Scholar 

  79. Pinsuwan S, Amnuaikit T, Ungphaiboon S, Itharat A (2010) Liposome-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity. J Med Assoc Thai 93(Suppl 7:S216-26):S216-26

    Google Scholar 

  80. Joshi H, Hegde AR, Shetty PK, Gollavilli H, Managuli RS, Kalthur G, Mutalik S (2018) Sunscreen creams containing naringenin nanoparticles: formulation development and in vitro and in vivo evaluations. Photodermatol Photoimmunol Photomed 34(1):69–81. https://doi.org/10.1111/phpp.12335

    Article  CAS  Google Scholar 

  81. Scapagnini G, Davinelli S, Di Renzo L, De Lorenzo A, Olarte HH, Micali G, Cicero AF, Gonzalez S (2014) Cocoa bioactive compounds: significance and potential for the maintenance of skin health. Nutrients 6(8):3202–3213. https://doi.org/10.3390/nu6083202

    Article  CAS  Google Scholar 

  82. Ajazuddin S (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia 81:680–689. https://doi.org/10.1016/j.fitote.2010.05.001

    Article  CAS  Google Scholar 

  83. Rafiee Z, Nejatian M, Daeihamed, Jafari SM (2019) Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes. Trends Food Sci Technol 88:445–458. https://doi.org/10.1016/j.tifs.2019.04.017

    Article  CAS  Google Scholar 

  84. Singh H, Bharadvaja N (2021) Treasuring the computational approach in medicinal plant research. Prog Biophys Mol Biol 164:19–32. https://doi.org/10.1016/j.pbiomolbio.2021.05.004

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive financial support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneeta Bharadvaja.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 132.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadvaja, N., Gautam, S. & Singh, H. Natural polyphenols: a promising bioactive compounds for skin care and cosmetics. Mol Biol Rep 50, 1817–1828 (2023). https://doi.org/10.1007/s11033-022-08156-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08156-9

Keywords

Navigation