Skip to main content
Log in

Development of Controlled Delivery Functional Systems by Microencapsulation of Different Extracts of Plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Extracts of different plants (Hypericum perforatum L., Salvia officinalais L. and Syzygium aromaticum) were microencapsulated. Different microparticles were prepared by a spray drying process, and they were fully characterized and evaluated in terms of controlled release. The product yield of the spray dryer varied from 26.5 to 65.5 wt%. All the microparticles present a regular shape, a very smooth surface and a mean size smaller than 20 μm. The total release was achieved in less than 70 min. The encapsulation efficiency was around 100%. The release profiles were simulated and evaluated using different kinetic models: Korsmeyer-Peppas (R2: 0.795–0.992), Weibull (R2: 0.973–0.999) and Baker–Lonsdale (R2: 0.855–0.964). These mathematical models allowed the evaluation of the mass transport mechanisms involved in the release, which, in turn, helps to design a system with specific characteristics. Finally, the Weibull model presents a better adjustment to the experimental release profiles, and the drug transport mechanism involved in almost all the release profiles studied is by an anomalous transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data that support the findings of this study are available on request from the authors.

References

  • Abdelkader, M., Ahcen, B., Rachid, D., Hakim, H., & Materiel, A. P. (2014). Phytochemical study and biological activity of sage ( Salvia officinalis L .), (September 2019).

  • Aceituno-Medina, M., Mendoza, S., Lagaron, J. M., & López-Rubio, A. (2014). Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate - Pullulan electrospun fibers. LWT - Food Science and Technology, 62(2), 970–975. https://doi.org/10.1016/j.lwt.2015.02.025.

    Article  CAS  Google Scholar 

  • Adefegha, S. A., Oboh, G., Oyeleye, S. I., & Osunmo, K. (2016). Alteration of starch hydrolyzing enzyme inhibitory properties, antioxidant activities, and phenolic profile of clove buds (Syzygium aromaticum L.) by cooking duration. Food Science & Nutrition, 4(2), 250–260. https://doi.org/10.1002/fsn3.284.

    Article  CAS  Google Scholar 

  • Aguiar, J., Estevinho, B. N., & Santos, L. (2016). Microencapsulation of natural antioxidants for food application - The specific case of coffee antioxidants - A review. Trends in Food Science and Technology, 58, 21–39. https://doi.org/10.1016/j.tifs.2016.10.012.

    Article  CAS  Google Scholar 

  • Aguiar, J., Costa, R., Rocha, F., Estevinho, B. N., & Santos, L. (2017). Design of microparticles containing natural antioxidants: Preparation, characterization and controlled release studies. Powder Technology, 313, 287–292. https://doi.org/10.1016/j.powtec.2017.03.013.

    Article  CAS  Google Scholar 

  • Aliakbarian, B., Paini, M., & Alberto, A. (2015). Effect of encapsulating agent on physical-chemical characteristics of olive pomace polyphenols-rich extracts (Vol. 43, pp. 97–102). https://doi.org/10.3303/CET1543017.

    Book  Google Scholar 

  • Amjadi, I., Mohajeri, M., Borisov, A., & Hosseini, M.-S. (2019). Antiproliferative effects of free and encapsulated Hypericum perforatum L. Extract and its potential interaction with doxorubicin for esophageal squamous cell carcinoma. Journal of pharmacopuncture, 22(2), 102–108. https://doi.org/10.3831/KPI.2019.22.013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Antal, I., Zelkó, R., Roczey, N., Plachy, J., & Rácz, I. (1997). Dissolution and diffuse reflectance characteristics of coated theophylline particles. International Journal of Pharmaceutics, 155(1), 83–89.

    Article  CAS  Google Scholar 

  • Azeredo, H. M. C. d. (2005). Encapsulação: aplicação à tecnologia de alimentos. Alim. Nutrition Araraquara, 16(1), 89–97.

    CAS  Google Scholar 

  • Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309. https://doi.org/10.1016/j.indcrop.2010.10.002.

    Article  CAS  Google Scholar 

  • Bashash, M., Zamindar, N., & Bolandi, M. (2014). Evaluation of antioxidant activities of Iranian sumac (R. coriaria L.) fruit and spice extracts with different solvents. Journal of Food Measurement and Characterization, 8(3), 213–217. https://doi.org/10.1007/s11694-014-9182-7.

    Article  Google Scholar 

  • Belščak-Cvitanović, A., Lević, S., Kalušević, A., Spoljarić, I., Dordević, V., Komes, D., et al. (2015). Efficiency assessment of natural biopolymers as encapsulants of green tea (Camellia sinensis L.) bioactive compounds by spray drying. Food and Bioprocess Technology, 8(12), 2444–2460. https://doi.org/10.1007/s11947-015-1592-y.

    Article  CAS  Google Scholar 

  • Boonchu, T., & Utama-ang, N. (2015). Optimization of extraction and microencapsulation of bioactive compounds from red grape ( Vitis vinifera L .) pomace, 52(February), 783–792. doi:https://doi.org/10.1007/s13197-013-1079-7

  • Bucurescu, A., Blaga, A. C., Estevinho, B. N., & Rocha, F. (2018). Microencapsulation of curcumin by a spray-drying technique using gum Arabic as encapsulating agent and release studies. Food and Bioprocess Technology, 11(10), 1795–1806. https://doi.org/10.1007/s11947-018-2140-3.

    Article  CAS  Google Scholar 

  • Cao, Y., Huang, L., Chen, J., Liang, J., Long, S., & Lu, Y. (2005). Development of a controlled release formulation based on a starch matrix system. International Journal of Pharmaceutics, 298(1), 108–116. https://doi.org/10.1016/j.ijpharm.2005.04.005.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso, T., Gonçalves, A., Estevinho, B. N., & Rocha, F. (2019). Potential food application of resveratrol microparticles: Characterization and controlled release studies. Powder Technology, 355, 593–601. https://doi.org/10.1016/j.powtec.2019.07.079.

    Article  CAS  Google Scholar 

  • Carlan, I. C., Estevinho, B. N., & Rocha, F. (2018). Study of different encapsulating agents for the microencapsulation of vitamin. B12, 17(4), 855–864.

    Google Scholar 

  • Casanova, F., Estevinho, B. N., & Santos, L. (2016). Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technology, 297, 44–49. https://doi.org/10.1016/j.powtec.2016.04.014.

    Article  CAS  Google Scholar 

  • Castro Coelho, S., Nogueiro Estevinho, B., & Rocha, F. (2021). Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying – A review. Food Chemistry, 339(July 2020), 127850. https://doi.org/10.1016/j.foodchem.2020.127850.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, D., & Bhattacharjee, P. (2013). Comparative evaluation of the antioxidant efficacy of encapsulated and un-encapsulated eugenol-rich clove extracts in soybean oil: Shelf-life and frying stability of soybean oil. Journal of Food Engineering, 117(4), 545–550. https://doi.org/10.1016/j.jfoodeng.2012.11.016.

    Article  CAS  Google Scholar 

  • Chaumun, M., Goëlo, V., Ribeiro, M., Rocha, F., & Estevinho, B. N. (2020). In vitro evaluation of microparticles with Laurus nobilis L. extract prepared by spray-drying for application in food and pharmaceutical products. Food and Bioproducts Processing, 122, 124–135. https://doi.org/10.1016/j.fbp.2020.04.011.

    Article  CAS  Google Scholar 

  • Consoli, L., Grimaldi, R., Sartori, T., & Menegalli, F. C. (2016). Gallic acid microparticles produced by spray chilling technique : Production and characterization. LWT - Food Science and Technology, 65, 79–87.

    Article  CAS  Google Scholar 

  • Cortés-Rojas, D. F., Souza, C. R. F., & Oliveira, W. P. (2014a). Encapsulation of eugenol rich clove extract in solid lipid carriers. Journal of Food Engineering, 127, 34–42. https://doi.org/10.1016/j.jfoodeng.2013.11.027.

    Article  CAS  Google Scholar 

  • Cortés-Rojas, D. F., de Souza, C. R. F., & Oliveira, W. P. (2014b). Clove (Syzygium aromaticum): A precious spice. Asian Pacific Journal of Tropical Biomedicine, 4(2), 90–96. https://doi.org/10.1016/S2221-1691(14)60215-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, D. C., Costa, H. S., Albuquerque, T. G., Ramos, F., Castilho, M. C., & Sanches-silva, A. (2015). Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends in Food Science & Technology, 45(2), 336–354.

    Article  CAS  Google Scholar 

  • da Cruz Cabral, L., Fernández Pinto, V., & Patriarca, A. (2013). Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166(1), 1–14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026.

    Article  CAS  PubMed  Google Scholar 

  • Da Silva, S. B., Amorim, M., Fonte, P., Madureira, R., Ferreira, D., Pintado, M., & Sarmento, B. (2015). Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharmaceutical Biology, 53(5), 642–652. https://doi.org/10.3109/13880209.2014.935949.

    Article  CAS  PubMed  Google Scholar 

  • Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica. Drug Research, 67(3), 217–223.

    CAS  Google Scholar 

  • De Barros Fernandes, R. V., Marques, G. R., Borges, S. V., & Botrel, D. A. (2014). Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Industrial Crops and Products, 58, 173–181. https://doi.org/10.1016/j.indcrop.2014.04.025.

    Article  CAS  Google Scholar 

  • Dogrukol-Ak, D., Kirimer, N., Tunçel, M., & Aboul-Enein, H. Y. (2001). Determination of rutin in Hypericum perforatum extract by capillary electrophoresis. Analytical Letters, 34(2), 185–191. https://doi.org/10.1081/AL-100001569.

    Article  CAS  Google Scholar 

  • Dordevic, V., Balanc, B., Belscak-Cvitanovic, A., Levic, S., Trifkovic, K., Kalusevic, A., et al. (2014). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4), 452–490. https://doi.org/10.1007/s12393-014-9106-7.

    Article  CAS  Google Scholar 

  • Estevinho, B. N., Damas, A. M., Martins, P., & Rocha, F. (2012). Study of the inhibition effect on the microencapsulated enzyme β-galactosidase. Environmental Engineering and Management Journal, 11(11), 1923–1930.

    Article  CAS  Google Scholar 

  • Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013a). Using water soluble chitosan for flavour microencapsulation in food industry. Journal of Microencapsulation, 30(6), 571–579. https://doi.org/10.3109/02652048.2013.764939.

    Article  CAS  PubMed  Google Scholar 

  • Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013b). Microencapsulation with chitosan by spray drying for industry applications – A review. Trends in Food Science and Technology, 31(2), 138–155. https://doi.org/10.1016/j.tifs.2013.04.001.

    Article  CAS  Google Scholar 

  • Estevinho, Berta N, Damas, A. M., Martins, P., & Rocha, F. (2014a). The Influence of microencapsulation with a modified chitosan ( water soluble ) on b -Galactosidase activity, 1575–1586. doi:https://doi.org/10.1080/07373937.2014.909843

  • Estevinho, B. N., Damas, A. M., Martins, P., & Rocha, F. (2014b). Microencapsulation of β -galactosidase with different biopolymers by a spray-drying process. FRIN, 64, 134–140. https://doi.org/10.1016/j.foodres.2014.05.057.

    Article  CAS  Google Scholar 

  • Estevinho, B. N., Ramos, I., & Rocha, F. (2015). Effect of the pH in the formation of galactosidase microparticles produced by a spray-drying process. International Journal of Biological Macromolecules, 78, 238–242. https://doi.org/10.1016/j.ijbiomac.2015.03.049.

    Article  CAS  PubMed  Google Scholar 

  • Estevinho, B. N., Carlan, I., Blaga, A., & Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technology, 289, 71–78. https://doi.org/10.1016/j.powtec.2015.11.019.

    Article  CAS  Google Scholar 

  • Estevinho, B. N., Mota, R., Leite, J. P., Tamagnini, P., Gales, L., & Rocha, F. (2019). Application of a cyanobacterial extracellular polymeric substance in the microencapsulation of vitamin B12. Powder Technology, 343, 644–651. https://doi.org/10.1016/j.powtec.2018.11.079.

    Article  CAS  Google Scholar 

  • Ferrero, C., Massuelle, D., & Doelker, E. (2010). Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. Journal of Controlled Release, 141(2), 223–233. https://doi.org/10.1016/j.jconrel.2009.09.011.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Ohlander, M., Jeppsson, N., Bjo, L., & Trajkovski, V. (2000). Changes in antioxidant effects and their relationship to phytonutrients in fruits of Sea Buckthorn ( Hippophae rhamnoides L .) during Maturation, 1485–1490.

  • Ghorbani, A., & Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components, 7(4), 433–440. doi:https://doi.org/10.1016/j.jtcme.2016.12.014

  • Gîrd, C. E., Nencu, I., Costea, T., Duţu, L. E., Popescu, M. L., & Ciupitu, N. (2014). Quantitative analysis of phenolic compounds from Salvia officinalis L. leaves. Farmacia, 62(4), 649–657.

    Google Scholar 

  • Goëlo, V., Chaumun, M., Gonçalves, A., Estevinho, B. N., & Rocha, F. (2020). Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. Powder Technology, 370, 137–146. https://doi.org/10.1016/j.powtec.2020.05.016.

    Article  CAS  Google Scholar 

  • Gonçalves, A., Estevinho, B. N., & Rocha, F. (2016). Microencapsulation of vitamin A : A review. Trends in Food Science & Technology, 51, 76–87. https://doi.org/10.1016/j.tifs.2016.03.001.

    Article  CAS  Google Scholar 

  • Gonçalves, A., Estevinho, B. N., & Rocha, F. (2017a). Design and characterization of controlled-release vitamin A microparticles prepared by a spray-drying process. Powder Technology, 305, 411–417. https://doi.org/10.1016/j.powtec.2016.10.010.

    Article  CAS  Google Scholar 

  • Gonçalves, B., Moeenfard, M., Rocha, F., Alves, A., Estevinho, B. N., & Santos, L. (2017b). Microencapsulation of a natural antioxidant from coffee—chlorogenic acid (3-caffeoylquinic acid). Food and Bioprocess Technology, 10(8), 1521–1530. https://doi.org/10.1007/s11947-017-1919-y.

    Article  CAS  Google Scholar 

  • Gonçalves, A., Estevinho, B. N., & Rocha, F. (2019). Characterization of biopolymer-based systems obtained by spray-drying for retinoic acid controlled delivery. Powder Technology, 345, 758–765. https://doi.org/10.1016/j.powtec.2019.01.062.

    Article  CAS  Google Scholar 

  • Grzegorczyk, I., & Wysokińska, H. (2011). A protocol for synthetic seeds from salvia officinalis L. shoot tips. Acta Biologica Cracoviensia Series Botanica, 53(1), 80–85. https://doi.org/10.2478/v10182-011-0011-6.

    Article  Google Scholar 

  • Güneş, S., & Tıhmınlıoğlu, F. (2017). Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. International Journal of Biological Macromolecules, 102, 933–943. https://doi.org/10.1016/j.ijbiomac.2017.04.080.

    Article  CAS  PubMed  Google Scholar 

  • Holgado, M. A., Iruin, A., Alvarez-Fuentes, J., & Fernández-Arévalo, M. (2008). Development and in vitro evaluation of a controlled release formulation to produce wide dose interval morphine tablets. European Journal of Pharmaceutics and Biopharmaceutics, 70(2), 544–549. https://doi.org/10.1016/j.ejpb.2008.05.021.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Z., Dumont, M. J., & Orsat, V. (2016). Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience, 15, 87–104. https://doi.org/10.1016/j.fbio.2016.05.007.

    Article  CAS  Google Scholar 

  • Jianu, C., Bujanca, G., Doros, G., Timisoara, P., & Misca, C. (2017). Essential Oil of Hypericum perforatum The chemical composition and antimicrobial activity, (April).

  • Khounvilay, K., Estevinho, B. N., Rocha, F. A., Oliveira, J. M., Vicente, A., & Sittikijyothin, W. (2018). Microencapsulation of citronella oil with carboxymethylated tamarind gum. Walailak Journal of Science and Technology, 15(7), 515–527.

    Article  Google Scholar 

  • Kim, J. H., Seo, C. S., Kim, S. S., & Ha, H. (2013). Simultaneous determination of gallic acid, ellagic acid, and eugenol in syzygium aromaticum and verification of chemical antagonistic effect by the combination with curcuma aromatica using regression analysis. Journal of Analytical Methods in Chemistry, 2013(June 2013), 1–7. https://doi.org/10.1155/2013/375294.

    Article  CAS  Google Scholar 

  • Lopes, A. R., Sousa, V. M., Estevinho, B. N., Leite, J. P., Moreira, N. F. F., Gales, L., Rocha, F., & Nunes, O. C. (2016). Production of microparticles of molinate degrading biocatalysts using the spray drying technique. Chemosphere, 161, 61–68. https://doi.org/10.1016/j.chemosphere.2016.07.006.

    Article  CAS  PubMed  Google Scholar 

  • López-Cánovas, A. E., Cabas, I., Ros-Chumillas, M., Navarro-Segura, L., López-Gómez, A., & García-Ayala, A. (2019). Nanoencapsulated clove essential oil applied in low dose decreases stress in farmed gilthead seabream (Sparus aurata L.) during slaughter by hypothermia in ice slurry. Aquaculture, 504, 437–445. https://doi.org/10.1016/j.aquaculture.2019.02.003.

    Article  CAS  Google Scholar 

  • Marin, P. D., & Ć, D. L. (2016). Salvia officinalis of different origins, (March).

  • Mendes, S., Mirante, D. C., & de Paula, J. P. (2016). Incorporation of nanoparticles containing essential oil of syzygium aromaticum into polymeric films: An assessment of their antimicrobial activity. Latin American Journal of Pharmacy, 35(9), 1938–1946.

    CAS  Google Scholar 

  • Nassar, M. I., Gaara, A. H., El-Ghorab, A. H., Farrag, A.-R. H., Shen, H., Huq, E., & Mabry, T. J. (2007). Chemical constituents of clove (Syzygium aromaticum , Fam . Myrtaceae) and their antioxidant activity. Revista Latinoamericana de Quimica, 35(3), 47–57. https://doi.org/10.2131/jts.39.353.

    Article  CAS  Google Scholar 

  • Nogueiro Estevinho, B., Lazar, R., Blaga, A., & Rocha, F. (2020). Preliminary evaluation and studies on the preparation, characterization and in vitro release studies of different biopolymer microparticles for controlled release of folic acid. Powder Technology, 4(3), 398–400. https://doi.org/10.1080/15551020902995363.

    Article  Google Scholar 

  • Öztrk, N., Tunçel, M., & Potog̈lu-Erkara, S. (2009). Phenolic compounds and antioxidant activities of some Hypericum species: A comparative study with H. perforatum. Pharmaceutical Biology, 47(2), 120–127. https://doi.org/10.1080/13880200802437073.

    Article  CAS  Google Scholar 

  • Pourhojat, F., Sohrabi, M., Shariati, S., Mahdavi, H., & Asadpour, L. (2017). Evaluation of poly ε-caprolactone electrospun nanofibers loaded with Hypericum perforatum extract as a wound dressing. Research on Chemical Intermediates, 43(1), 297–320. https://doi.org/10.1007/s11164-016-2623-7.

    Article  CAS  Google Scholar 

  • Qazi, H. J., Majeed, H., Safdar, W., Antoniou, J., & Fang, Z. (2015). A novel approach for microencapsulation of nanoemulsions to overcome the oxidation of bioactives in aqueous phase. Advance Journal of Food Science and Technology, 7(6), 388–394. https://doi.org/10.19026/ajfst.7.1329.

    Article  CAS  Google Scholar 

  • Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276(May 2018), 180–186. https://doi.org/10.1016/j.foodchem.2018.09.173.

    Article  CAS  PubMed  Google Scholar 

  • Rajabi, H., Ghorbani, M., Mahdi, S., Sadeghi, A., & Rajabzadeh, G. (2015). Food hydrocolloids retention of saffron bioactive components by spray drying encapsulation using maltodextrin , gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327–337. https://doi.org/10.1016/j.foodhyd.2015.05.033.

    Article  CAS  Google Scholar 

  • Ramteke, K. H., Dighe, P., Kharat, A. R., & Patil, S. (2014). Mathematical models of drug dissolution: A review. Scholars Academic Journal of Pharmacy, 3(5), 388–396. https://doi.org/10.1163/187226308X268845.

    Article  Google Scholar 

  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2019). Spray drying encapsulation of elderberry extract and evaluating the release and stability of phenolic compounds in encapsulated powders. Food and Bioprocess Technology, 12(8), 1381–1394. https://doi.org/10.1007/s11947-019-02304-z.

    Article  CAS  Google Scholar 

  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2020). Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends in Food Science & Technology, 105, 454–467. https://doi.org/10.1016/j.tifs.2019.03.011.

    Article  CAS  Google Scholar 

  • Saadatian, M. (2014). Extract compositions of Hypericum perforatum L . from wild populations of Mergewer District of Urmia, (May), 66–73. doi:https://doi.org/10.12988/asb.2014.4418

  • Saénz, C., Tapia, S., Chávez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616–622.

    Article  Google Scholar 

  • Sankalia, M. G., Mashru, R. C., Sankalia, J. M., & Sutariya, V. B. (2007). Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: optimization and physicochemical characterization. European Journal of Pharmaceutics and Biopharmaceutics, 65(2), 215–232. https://doi.org/10.1016/j.ejpb.2006.07.014.

    Article  CAS  PubMed  Google Scholar 

  • Santos-Gomes, P. C., Seabra, R. M., Andrade, P. B., & Fernandes-Ferreira, M. (2003). Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). Journal of Plant Physiology, 160(9), 1025–1032. https://doi.org/10.1078/0176-1617-00831.

    Article  CAS  PubMed  Google Scholar 

  • Sebaaly, C., Jraij, A., Fessi, H., Charcosset, C., & Greige-Gerges, H. (2015). Preparation and characterization of clove essential oil-loaded liposomes. Food Chemistry, 178, 52–62. https://doi.org/10.1016/j.foodchem.2015.01.067.

    Article  CAS  PubMed  Google Scholar 

  • Shehata, M. G., Abd-Rabou, H. S., & El-Sohaimy, S. A. (2019). Plant extracts in probiotic encapsulation: Evaluation of their effects on strains survivability in juice and drinkable yogurt during storage and an in-vitro gastrointestinal model. Journal of Pure and Applied Microbiology, 13(1), 609–617. https://doi.org/10.22207/JPAM.13.1.70.

    Article  CAS  Google Scholar 

  • Siepmann, J., & Siepmann, F. (2008). Mathematical modeling of drug delivery. International Journal of Pharmaceutics, 364(2), 328–343. https://doi.org/10.1016/j.ijpharm.2008.09.004.

    Article  CAS  PubMed  Google Scholar 

  • Skalickova, S., Aulichova, T., Venusova, E., Skladanka, J., & Horky, P. (2020). Development of ph-responsive biopolymeric nanocapsule for antibacterial essential oils. International Journal of Molecular Sciences, 21(5). https://doi.org/10.3390/ijms21051799.

  • Terada, T., Tagami, M., Ohtsubo, T., Iwao, Y., Noguchi, S., & Itai, S. (2016). Sustained-release microsphere formulation containing an agrochemical by polyurethane polymerization during an agitation granulation process. International Journal of Pharmaceutics, 509(1–2), 328–337. https://doi.org/10.1016/j.ijpharm.2016.05.061.

    Article  CAS  PubMed  Google Scholar 

  • Torre, P. M. d. l., Enobakhare, Y., Torrado, G., & Torrado, S. (2003). Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials, 24(8), 1499–1506 http://www.ncbi.nlm.nih.gov/pubmed/12527291.

    Article  Google Scholar 

  • Tusevski, O., Stefova, M., & Simic, S. G. (2019). Phenolic compounds composition of Hypericum perforatum L. Wild-Growing, 84(1).

  • Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114(2), 511–515. https://doi.org/10.1016/j.foodchem.2008.09.080.

    Article  CAS  Google Scholar 

  • Wicaksono, A. B., Hermasnyah, H., Wijanarko, A., & Sahlan, M. (2019). Scale-up simulation and economic evaluation of encapsulated eugenol with casein micelle using spray drying method. Journal of Physics: Conference Series, 1295(1), 012072. https://doi.org/10.1088/1742-6596/1295/1/012072.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Berta Estevinho acknowledges Fundação para a Ciência e a Tecnologia (FCT) for the contract based on the “Lei do Emprego Científico” (DL 57/2016).

Funding

This work was financially supported by project UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), funded by national funds through the FCT/MCTES (PIDDAC); Project POCI-01-0145-FEDER-028715 (MicroDelivery — development of controlled delivery functional systems by microencapsulation of natural and active compounds with therapeutic, nutritional and technological interest) and funded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berta N. Estevinho.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estevinho, B.N., Horciu, IL., Blaga, AC. et al. Development of Controlled Delivery Functional Systems by Microencapsulation of Different Extracts of Plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. Food Bioprocess Technol 14, 1503–1517 (2021). https://doi.org/10.1007/s11947-021-02652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02652-9

Keywords

Navigation