Skip to main content
Log in

The Antifungal Efficacy of Flavonoids from Sedum aizoon L. on Grapes

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The occurrence of gray mold is the main cause of rot and spoilage in grapes, and Botrytis cinerea is the main causative agent of gray mold. The aim of this study is to clarify the inhibitory effect of flavonoids from Sedum aizoon L. (FSAL) on gray mold of grapes and to provide some basis for the development of new natural plant-derived antifungal agents. The effect of FSAL on the disease resistance of grapes was investigated by measuring the disease incidence and lesion diameter. The effect of FSAL on fruit quality was studied by measuring pondus hydrogenii (pH), total soluble solid (TSS), ascorbic acid (AA) and soluble sugar content. The activities of catalase (CAT), peroxidase (POD), phenylalanine ammonia lyase (PAL), and superoxide dismutase (SOD) were used to explore the effect of FSAL on the antioxidant capacities in grapes. The effects of FSAL on the ethylene synthesis in mitogen-activated protein kinase (MAPK) signaling pathway in grapes were investigated by measuring the levels of reactive oxygen species (ROS) and the relative expression of VvACS1, VvACO1, VvACO2, and VvACO3 genes. The results showed that FSAL treatment reduced disease incidence and lesion diameter, increased AA content in fruit and thus maintained fruit quality. FSAL treatment significantly increased CAT, POD, PAL, and SOD activities in fruit, and reduced the relative expression of the genes. In conclusion, FSAL has a certain inhibitory effect on gray mold while not affecting grape quality, and delays the ripening and aging of fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data sets generated and/or analyzed during this study can be reasonably requested from the corresponding authors.

References

  • Ali, A., Chow, W. L., Zahid, N., & Ong, M. K. (2014). Efficacy of propolis and cinnamon oil coating in controlling post-harvest anthracnose and quality of chilli (Capsicum annuum L.) during cold storage. Food and Bioprocess Technology, 7(9), 2742–2748. https://doi.org/10.1007/s11947-013-1237-y

  • Ali, A., Hei, G. K., & Keat, Y. W. (2016). Efficacy of ginger oil and extract combined with gum arabic on anthracnose and quality of papaya fruit during cold storage. Journal of Food Science and Technology, 53(3), 1435–1444. https://doi.org/10.1007/s13197-015-2124-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsharairi, N. A. (2021). Scutellaria baicalensis and their natural flavone compounds as potential medicinal drugs for the treatment of nicotine-induced non-small-cell lung cancer and asthma. International Journal of Environmental Research and Public Health, 18(10), 5243. https://doi.org/10.3390/ijerph18105243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alwi, N. A., & Ali, A. (2015). Dose-dependent effect of ozone fumigation on physiological characteristics, ascorbic acid content and disease development on bell pepper (Capsicum annuum L.) during storage. Food and Bioprocess Technology, 8(3), 558–566. https://doi.org/10.1007/s11947-014-1419-2

  • Ansorena, M. R., Zubeldía, F., & Marcovich, N. E. (2016). Active wheat gluten films obtained by thermoplastic processing. LWT-Food Science and Technology, 69, 47–54. https://doi.org/10.1016/j.lwt.2016.01.020

    Article  CAS  Google Scholar 

  • Araújo, J. M. S., de Siqueira, A. C. P., Blank, A. F., Narain, N., & de Aquino Santana, L. C. L. (2018). A cassava starch-chitosan edible coating enriched with Lippia sidoides Cham. essential oil and pomegranate peel extract for preservation of Italian tomatoes (Lycopersicon esculentum Mill.) stored at room temperature. Food and Bioprocess Technology, 11(9), 1750–1760. https://doi.org/10.1007/s11947-018-2139-9

  • Ayón Reyna, L. E., Uriarte Gastelum, Y. G., Camacho Díaz, B. H., Tapia Maruri, D., López López, M. E., López Velázquez, J. G., & Vega García, M. O. (2022). Antifungal activity of a chitosan and mint essential oil coating on the development of Colletotrichum Gloeosporioides in papaya using macroscopic and microscopic analysis. Food and Bioprocess Technology, 15(2), 368–378. https://doi.org/10.1007/s11947-022-02764-w

    Article  CAS  Google Scholar 

  • Bai, T., Li, J., Murtaza, A., Iqbal, A., Zhu, L., Zhang, J., Zhang, B., Xu, X., Pan, S., & Hu, W. (2022). Scavenging of ROS after eugenol treatment as mechanism of slowing down membrane lipid metabolism to maintain the surface color of fresh-cut yam. Food and Bioprocess Technology, 15(8), 1821–1835. https://doi.org/10.1007/s11947-022-02833-0

    Article  CAS  Google Scholar 

  • Barreto, T. A., Andrade, S. C., Maciel, J. F., Arcanjo, N. M., Madruga, M. S., Meireles, B., Cordeiro, Â. M., Souza, E. L, & Magnani, M. (2016). A chitosan coating containing essential oil from Origanum vulgare L. to control postharvest mold infections and keep the quality of cherry tomato fruit. Frontiers in Microbiology, 7, 1724. https://doi.org/10.3389/fmicb.2016.01724

  • Bu, S., Munir, S., He, P., Li, Y., Wu, Y., Li, X., Kong, B., He, P., & He, Y. (2021). Bacillus subtilis L1–21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biological Control, 157, 104568. https://doi.org/10.1016/j.biocontrol.2021.104568

  • Cai, J., Cheng, S., Luo, F., Zhao, Y., Wei, B., Zhou, Q., Zhou, X., & Ji, S. (2019). Influence of ethylene on morphology and pigment changes in harvested broccoli. Food and Bioprocess Technology, 12(5), 883–897. https://doi.org/10.1007/s11947-019-02267-1

    Article  CAS  Google Scholar 

  • Candiracci, M., Citterio, B., & Piatti, E. (2012). Antifungal activity of the honey flavonoid extract against Candida albicans. Food Chemistry, 131(2), 493–499. https://doi.org/10.1016/j.foodchem.2011.09.012

    Article  CAS  Google Scholar 

  • Chen, Y., Zhang, Y., Nawaz, G., Zhao, C., Li, Y., Dong, T., Zhu, M., Du, X., Zhang, L., Li, Z., & Xu, T. (2020). Exogenous melatonin attenuates post-harvest decay by increasing antioxidant activity in wax apple (Syzygium samarangense). Frontiers in Plant Science, 11(569779), 2020. https://doi.org/10.3389/fpls.2020.569779.eCollection

    Article  Google Scholar 

  • Cheng, Y., Li, C., Hou, J., Li, Y., Jiang, C., & Ge, Y. (2020). Mitogen-activated protein kinase cascade and reactive oxygen species metabolism are involved in acibenzolar-S-methyl-induced disease resistance in apples. Journal of Agricultural and Food Chemistry, 68(39), 10928–10936. https://doi.org/10.1021/acs.jafc.0c04257

    Article  CAS  PubMed  Google Scholar 

  • Chung, K. R. (2012). Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. Scientifica (Cairo), 2012, 635431. https://doi.org/10.6064/2012/635431

  • da Silva, P. P. M., de Oliveira, J., Biazotto, A. D. M., Parisi, M. M., da Glória, E. M., & Spoto, M. H. F. (2020). Essential oils from Eucalyptus staigeriana F. Muell. ex Bailey and Eucalyptus urograndis W. Hill ex Maiden associated to carboxymethylcellulose coating for the control of Botrytis cinerea Pers. Fr. and Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. in strawberries. Industrial Crops and Products, 156, 112884. https://doi.org/10.1016/j.indcrop.2020.112884

  • Das, M. R., Sarma, R. K., Borah, S., Kumari, R., Saikia, R., Deshmukh, A. B., Shelke, M. V., Sengupta, P., Szunerits, S., & Boukherroub, R. (2013). The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids and Surfaces. b, Biointerfaces, 105, 128–136. https://doi.org/10.1016/j.colsurfb.2012.12.033

    Article  CAS  PubMed  Google Scholar 

  • Esteban, MA., Cordero, H., Martínez-Tomé, M., Jiménez-Monreal, A. M., Bakhrouf, A., & Mahdhi, A. (2014). Effect of dietary supplementation of probiotics and palm fruits extracts on the antioxidant enzyme gene expression in the mucosae of gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 39(2), 532–540. https://doi.org/10.1016/j.fsi.2014.06.012

  • Fan, L., Wei, Y., Chen, Y., Jiang, S., Xu, F., Zhang, C., Wang, H., & Shao, X. (2023). Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches. Food Chemistry, 403, 134419. https://doi.org/10.1016/j.foodchem.2022.134419

  • Fang, H., Zhou, Q., Yang, Q., Zhou, X., Cheng, S., Wei, B., Li, J., & Ji, S. (2022). Influence of combined edible coating with chitosan and tea polyphenol on the quality deterioration and health-promoting compounds in harvested broccoli. Food and Bioprocess Technology, 15(2), 407–420.

    Article  CAS  Google Scholar 

  • Fernández, G., Sbres, M., Lado, J., & Pérez-Faggiani, E. (2022). Postharvest sour rot control in lemon fruit by natamycin and an Allium extract. International Journal of Food Microbiology, 368, 109605. https://doi.org/10.1016/j.ijfoodmicro.2022.109605

  • Foyer, C. (2007). Ascorbic acid homeostasis and its effects on plant growth and defence. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(4, Supplement), S250. https://doi.org/10.1016/j.cbpa.2007.01.583

  • Guigón-López, C., Holguín-Ibarra, P. D., Torres-Zapien, J. H., García-Cruz, I., Villapando, I., & Salas-Salazar, N. A. (2021). Metarhizium anisopliae reduces conidial germination and mycelium growth of the apple gray mold Botrytis cinerea. Biological Control, 160, 104660. https://doi.org/10.1016/j.biocontrol.2021.104660

  • Han, S. H., Song, M. H., & Keum, Y. S. (2020). Effects of azole fungicides on secreted metabolomes of Botrytis cinerea. Journal of Agricultural and Food Chemistry, 68(19), 5309–5317. https://doi.org/10.1021/acs.jafc.0c00696

    Article  CAS  PubMed  Google Scholar 

  • Inupakutika, M. A., Sengupta, S., Devireddy, A. R., Azad, R. K., & Mittler, R. (2016). The evolution of reactive oxygen species metabolism. Journal of Experimental Botany, 67(21), 5933–5943. https://doi.org/10.1093/jxb/erw382

    Article  CAS  PubMed  Google Scholar 

  • Kaya, C., Ugurlar, F., Ashraf, M., Alyemeni, M. N., Bajguz, A., & Ahmad, P. (2022). The involvement of hydrogen sulphide in melatonin-induced tolerance to arsenic toxicity in pepper (Capsicum annuum L.) plants by regulating sequestration and subcellular distribution of arsenic, and antioxidant defense system. Chemosphere, 309, 136678. https://doi.org/10.1016/j.chemosphere.2022.136678

  • Khademi, O., Salvador, A., Zamani, Z., & Besada, C. (2013). Effects of hot water treatments on antioxidant enzymatic system in reducing flesh browning of persimmon. Food and Bioprocess Technology, 6(11), 3038–3046. https://doi.org/10.1007/s11947-012-0959-6

    Article  CAS  Google Scholar 

  • Li. G., Wang, Y., Zhang, Z., Chen, Y., & Tian, S. (2022a). Mushroom alcohol controls gray mold caused by Botrytis cinerea in harvested fruit via activating the genes involved in jasmonic acid signaling pathway. Postharvest Biology and Technology, 186, 111843. https://doi.org/10.1016/j.postharvbio.2022.111843

  • Li, M., Li, B., Yang, M., Wang, L., Hou, G., Lin, Y., Zhang, Y., Zhang, Y., Chen, Q., Wang, Y., He, W., Wang, X., Tang, H., Yang, G., & Luo, Y. (2022b). Genome-wide identification and expression of MAPK gene family in cultivated strawberry and their involvement in fruit developing and ripening. International of Journal of Molecular Sciences, 23(9), 5201. https://doi.org/10.3390/ijms23095201

    Article  CAS  Google Scholar 

  • Li, R., Li, Y., Zhang, Y., Sheng, J., Zhu, H., & Shen, L. (2021). Transcriptome analysis reveals that SlNPR1 mediates tomato fruit resistance against Botrytis cinerea by modulating phenylpropanoid metabolism and balancing ROS homeostasis. Postharvest Biology and Technology, 172, 111382. https://doi.org/10.1016/j.postharvbio.2020.111382

  • Li, S., Cheng, Y., Yan, R., Liu, Y., Huan, C., & Zheng, X. (2022c). Preharvest spray with melatonin improves postharvest disease resistance in cherry tomato fruit. Postharvest Biology and Technology, 193, 112055. https://doi.org/10.1016/j.postharvbio.2022.112055

  • Li, S., Han, X., Yang, L., Deng, X., Wu, H., Zhang, M., Liu, Y., Zhang, S., & Xu, J. (2018). Mitogen-activated protein kinases and calcium-dependent protein kinases are involved in wounding-induced ethylene biosynthesis in Arabidopsis thaliana. Plant, Cell & Environment, 41(1), 134–147. https://doi.org/10.1111/pce.12984

    Article  CAS  Google Scholar 

  • Liu, L., Rao, J., Chang, X., & Yi, S. (2009). Regulation of propylene and 1-methylcyclopropene on expressions of ACS and ACO genes in persimmon fruits. Agricultural Sciences in China, 8(10), 1187–1192. https://doi.org/10.1016/S1671-2927(08)60328-4

    Article  Google Scholar 

  • Liu, X., Li, J., Cui, X., Ji, D., Xu, Y., Chen, T., & Tian, S. (2020). Exogenous bamboo pyroligneous acid improves antioxidant capacity and primes defense responses of harvested apple fruit. LWT, 134, 110191. https://doi.org/10.1016/j.lwt.2020.110191

  • Low, W. L., Martin, C., Hill, D. J., & Kenward, M. A. (2011). Antimicrobial efficacy of silver ions in combination with tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. International Journal of Antimicrobial Agents, 37(2), 162–165. https://doi.org/10.1016/j.ijantimicag.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  • Luo, J., Xu, F., Zhang, X., Shao, X., Wei, Y., & Wang, H. (2020). Transcriptome analysis of Penicillium italicum in response to the flavonoids from Sedum aizoon L. World Journal of Microbiology and Biotechnology, 36(5), 62. https://doi.org/10.1007/s11274-020-02836-z

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Yuan, Y., Li, C., Wu, Q., He, Z., Li, J., & Zhao, M. (2021). Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of LcACS1/4 and LcACO2/3 in litchi. Horticulture Research, 8(1), 105. https://doi.org/10.1038/s41438-021-00540-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhães Brandão, R., Roberto Batista, L., Elvis de Oliveira, J., Bispo Barbosa, R., Lee Nelson, D., & Graças Cardoso, M. (2023). In vitro and in vivo efficacy of poly(lactic acid) nanofiber packaging containing essential oils from Ocimum basilicum L. and Ocimum gratissimum L. against Aspergillus carbonarius and Aspergillus niger in table grapes. Food Chemistry, 400, 134087. https://doi.org/10.1016/j.foodchem.2022.134087

  • Nunes, C. A. (2011). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181–196. https://doi.org/10.1007/s10658-011-9919-7

    Article  Google Scholar 

  • Ouaked, F., Rozhon, W., Lecourieux, D., & Hirt, H. (2003). A MAPK pathway mediates ethylene signaling in plants. Embo Journal, 22(6), 1282–1288. https://doi.org/10.1093/emboj/cdg131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owolabi, I. O., Songsamoe, S., & Matan, N. (2021). Combined impact of peppermint oil and lime oil on Mangosteen (Garcinia Mangostana) fruit ripening and mold growth using closed system. Postharvest Biology and Technology, 175, 111488. https://doi.org/10.1016/j.postharvbio.2021.111488

  • Piechowiak, T., Skóra, B., & Balawejder, M. (2020). Ozone treatment induces changes in antioxidative defense system in blueberry fruit during storage. Food and Bioprocess Technology, 13(7), 1240–1245. https://doi.org/10.1007/s11947-020-02450-9

    Article  CAS  Google Scholar 

  • Pun, U. K., Yamada, T., Azuma, M., Tanase, K., Yoshioka, S., Shimizu-Yumoto, H., Satoh, S., & Ichimura, K. (2016). Effect of sucrose on sensitivity to ethylene and enzyme activities and gene expression involved in ethylene biosynthesis in cut carnations. Postharvest Biology and Technology, 121, 151–158. https://doi.org/10.1016/j.postharvbio.2016.08.001

    Article  CAS  Google Scholar 

  • Radi, M., Ahmadi, H., & Amiri, S. (2022). Effect of cinnamon essential oil-loaded nanostructured lipid carriers (NLC) against Penicillium Citrinum and Penicillium Expansum involved in tangerine decay. Food and Bioprocess Technology, 15(2), 306–318. https://doi.org/10.1007/s11947-021-02737-5

    Article  CAS  Google Scholar 

  • Rossi, F. R., Krapp, A. R., Bisaro, F., Maiale, S. J., Pieckenstain, F. L., & Carrillo, N. (2017). Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant Journal, 92(5), 761–773. https://doi.org/10.1111/tpj.13718

    Article  CAS  Google Scholar 

  • Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of flavonoids: A review. Food and Bioprocess Technology, 5(2), 409–424. https://doi.org/10.1007/s11947-011-0573-z

    Article  CAS  Google Scholar 

  • Sellamuthu, P. S., Sivakumar, D., Soundy, P., & Korsten, L. (2013). Essential oil vapours suppress the development of anthracnose and enhance defence related and antioxidant enzyme activities in avocado fruit. Postharvest Biology and Technology, 81, 66–72. https://doi.org/10.1016/j.postharvbio.2013.02.007

    Article  CAS  Google Scholar 

  • Sempere-Ferre, F., Giménez-Santamarina, S., Roselló, J., & Santamarina, M. P. (2022). Antifungal in vitro potential of Aloe vera gel as postharvest treatment to maintain blueberry quality during storage. LWT, 163, 113512. https://doi.org/10.1016/j.lwt.2022.113512

  • Shen, W., Li, W., Shao, Y., & Zeng, J. (2023). Proanthocyanidin delays litchi peel browning by inhibiting ethylene biosynthesis, respiratory metabolism, and phenol oxidase activities. Scientia Horticulturae, 309, 111677. https://doi.org/10.1016/j.scienta.2022.111677

  • Smékalová, V., Doskočilová, A., Komis, G., & Šamaj, J. (2014). Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnology Advances, 32(1), 2–11. https://doi.org/10.1016/j.biotechadv.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., Hao, J., Yang, H., & Chen, H. (2018). Effect of chitosan coatings enriched with lauroyl arginate ethyl and montmorillonite on microbial growth and quality maintenance of minimally processed table grapes (Vitis vinifera L. Kyoho) during cold storage. Food and Bioprocess Technology, 11(10), 1853–1862. https://doi.org/10.1007/s11947-018-2146-x

  • Viacava, G. E., Cenci, M. P., & Ansorena, M. R. (2022). Effect of chitosan edible coatings incorporated with free or microencapsulated thyme essential oil on quality characteristics of fresh-cut carrot slices. Food and Bioprocess Technology, 15(4), 768–784. https://doi.org/10.1007/s11947-022-02783-7

    Article  CAS  Google Scholar 

  • Wang, D., Li, W., Li, D., Li, L., & Luo, Z. (2021). Effect of high carbon dioxide treatment on reactive oxygen species accumulation and antioxidant capacity in fresh-cut pear fruit during storage. Scientia Horticulturae, 281, 109925. https://doi.org/10.1016/j.scienta.2021.109925

  • Wang, H., Xu, F., Zhang, X., Shao, X., Wei, Y., & Wang, H. (2022a). Transcriptomic analysis reveals antibacterial mechanism of flavonoids from Sedum aizoon L. against Pseudomonas fragi. Food Control, 134, 108755. https://doi.org/10.1016/j.foodcont.2021.108755

  • Wang, K., Zhang, X., Shao, X., Wei, Y., Xu, F., & Wang, H. (2022b). Flavonoids from Sedum aizoon L. inhibit Botrytis cinerea by negatively affecting cell membrane lipid metabolism. Applied Microbiology and Biotechnology, 106(21), 7139–7151. https://doi.org/10.1007/s00253-022-12196-3

  • Wang, L., Jin, P., Wang, J., Jiang, L., Shan, T., & Zheng, Y. (2015). Methyl jasmonate primed defense responses against Penicillium expansum in sweet cherry fruit. Plant Molecular Biology Reporter, 33(5), 1464–1471. https://doi.org/10.1007/s11105-014-0844-8

    Article  CAS  Google Scholar 

  • Wei, L., Feng, L., Liu, Y., & Liao, W. (2022). Mitogen-activated protein kinase is involved in salt stress response in tomato (Solanum lycopersicum) seedlings. International Journal of Molecular Sciences, 23(14), 7645. https://doi.org/10.3390/ijms23147645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X., Liu, Z., & Liao, W. (2021). The involvement of gaseous signaling molecules in plant MAPK cascades: Function and signal transduction. Planta, 254(6), 127. https://doi.org/10.1007/s00425-021-03792-0

    Article  CAS  PubMed  Google Scholar 

  • Xu, D., Deng, Y., Xi, P., Yu, G., Wang, Q., Zeng, Q., Jiang, Z., & Gao, L. (2019). Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chemistry, 286, 226–233. https://doi.org/10.1016/j.foodchem.2019.02.015

    Article  CAS  PubMed  Google Scholar 

  • Xu, T., Wang, Z., Lei, T., Lv, C., Wang, J., & Lu, J. (2015). New flavonoid glycosides from Sedum aizoon L. Fitoterapia, 101, 125–132. https://doi.org/10.1016/j.fitote.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  • Yu, Q., Zhang, L., Sun, D., Hu, Y., Li, P., Zhang, X., Ding, L., Zhou, L., Guan, Z., Fang, W., Chen, F., & Song, A. (2022). Interaction between MAPKs and MKPs phosphatases in hexaploid chrysanthemum illuminates functional paralogue diversification in polyploids. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2022.01.003

    Article  Google Scholar 

  • Zhao, L., He, F., Li, B., Gu, X., Zhang, X., Dhanasekaran, S., & Zhang, H. (2022a). Transcriptomic analysis of the mechanisms involved in enhanced antagonistic efficacy of Meyerozyma guilliermondii by methyl jasmonate and disease resistance of postharvest apples. LWT-Food Science and Technology, 160, 113323. https://doi.org/10.1016/j.lwt.2022.113323

  • Zhao, M., Li, C., Ma, X., Xia, R., Chen, J., Liu, X., Ying, P., Peng, M., Wang, J., Shi, C. L., & Li, J. (2020). KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. Journal of Experimental Botany, 71(14), 4069–4082. https://doi.org/10.1093/jxb/eraa162

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Zhang, Y., Bai, X., Lin, R., Shi, G., Du, P., & Xiao, K. (2022b). TaNF-YB11, a gene of NF-Y transcription factor family in Triticumaestivum, confers drought tolerance on plants via modulating osmolyte accumulation and reactive oxygen species homeostasis. Journal of Integrative Agriculture, 21(11), 3114–3130. https://doi.org/10.1016/j.jia.2022.07.058

    Article  CAS  Google Scholar 

  • Zheng, F., Zheng, W., Li, L., Pan, S., Liu, M., Zhang, W., Liu, H., & Zhu, C. (2017). Chitosan controls postharvest decay and elicits defense response in kiwifruit. Food and Bioprocess Technology, 10(11), 1937–1945. https://doi.org/10.1007/s11947-017-1957-5

    Article  CAS  Google Scholar 

  • Zhong, Z., Zhou, L., Yu, K., Jiang, F., Xu, J., Zou, L., Du, L., & Liu, W. (2022). Effects of microporous packaging combined with chitosan coating on the quality and physiological metabolism of passion fruit after harvest. Food and Bioprocess Technology, 15(8), 1836–1850. https://doi.org/10.1007/s11947-022-02845-w

    Article  CAS  Google Scholar 

  • Zimdars, S., Hitschler, J., Schieber, A., & Weber, F. (2017). Oxidation of wine polyphenols by secretomes of wild Botrytis cinerea strains from white and red grape varieties and determination of their specific laccase activity. Journal of Agricultural and Food Chemistry, 65(48), 10582–10590. https://doi.org/10.1021/acs.jafc.7b04375

    Article  CAS  PubMed  Google Scholar 

  • Zwerger, K., & Hirt, H. (2001). Recent advances in plant MAP kinase signalling. Biological Chemistry, 382(8), 1123–1131. https://doi.org/10.1515/BC.2001.142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province.

Funding

The study was supported by the Natural Science Foundation of Zhejiang Province [LY16C200003] and the Student Research and Innovation Program of Ningbo University (2021SRIP3607).

Author information

Authors and Affiliations

Authors

Contributions

Kaiyue Wang: investigation, formal analysis, and writing—original draft. Qingqing Ge: data curation. Xingfeng Shao: writing—review and editing. Yingying Wei: data curation. Xin Zhang: methodology. Hongfei Wang: conceptualization, supervision, and project administration. Feng Xu: resources, validation, and visualization.

Corresponding authors

Correspondence to Hongfei Wang or Feng Xu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Ge, Q., Shao, X. et al. The Antifungal Efficacy of Flavonoids from Sedum aizoon L. on Grapes. Food Bioprocess Technol 17, 722–735 (2024). https://doi.org/10.1007/s11947-023-03165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03165-3

Keywords

Navigation