Skip to main content
Log in

Physicochemical Characterization, Molecular Modeling, and Applications of Carboxymethyl Chitosan-Based Multifunctional Films Combined with Gum Arabic and Anthocyanins

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Novel pH and ammonia-sensitive intelligent film was fabricated with carboxymethyl cellulose (CMC) as film-forming substrate, gum Arabic (GA) as enhancer, and anthocyanins from Cinnamomum camphora fruit peel waste (ANC.P) as indicator, antioxidant, and antimicrobial. The incorporation of ANC.P on CMC-GA (CG-ANC.P) film significantly increased the mechanical property, physical properties (swelling degree, moisture content, solubility, vapor barrier properties, and oil permeability resistance), color, opacity, morphological characteristics, melting, and bioactivities (antioxidant, antibacterial, biodegradable, and pH/ammonia-sensitive manners) without significant changes in the film thickness. Computational molecular imitation analysis suggested an enhancement between ANC.P, CMC, and GA through hydrogen bonds and forces of van der Waals. Notably, the smart packaging film was tested to monitor soybean oil freshness during storage at 50 °C for 28 days. Moreover, the shelf-life characteristics proved the ability of films to retard oil oxidation. Additionally, the sensory characteristics emphasize higher scores of colors, odor, and overall acceptability with the increased concentration of anthocyanin. When applied in monitoring beef freshness at 4 °C, the CG-ANC.P film indicated sensitively with vision recognizable color changes from original pink to pink-yellow and finally to grayish-yellow, which highly correlated with the deterioration indexes of the total color difference, pH value, and total viable count of beef.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdillah, A. A., Lin, H.-H., & Charles, A. L. (2022). Development of halochromic indicator film based on arrowroot starch/iota-carrageenan using Kyoho skin extract to monitor shrimp freshness. International Journal of Biological Macromolecules, 211, 316–327. https://doi.org/10.1016/j.ijbiomac.2022.05.076

    Article  CAS  PubMed  Google Scholar 

  • Abdin, M., El-Beltagy, A., El-sayed, M., & Naeem, M. A. (2021a). Production and characterization of sodium alginate/gum Arabic based films enriched with Syzygium cumini seeds extracts for food application. Journal of Polymers and the Environment, 30, 1615–1626. https://doi.org/10.1007/s10924-021-02306-z

    Article  CAS  Google Scholar 

  • Abdin, M., Salama, M. A., Gawad, R., Fathi, M. A., & Alnadari, F. (2021b). Two-steps of gelation system enhanced the stability of Syzygium cumini anthocyanins by encapsulation with sodium alginate, maltodextrin, chitosan and gum arabic. Journal of Polymers and the Environment, 29(11), 3679–3692. https://doi.org/10.1007/s10924-021-02140-3

    Article  CAS  Google Scholar 

  • Akhtar, H. M. S., Riaz, A., Hamed, Y. S., Abdin, M., Chen, G., Wan, P., & Zeng, X. (2018). Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. International Journal of Biological Macromolecules, 118, 469–477. https://doi.org/10.1016/j.ijbiomac.2018.06.090

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh-Sani, M., Tavassoli, M., Mohammadian, E., Ehsani, A., Khaniki, G. J., Priyadarshi, R., & Rhim, J.-W. (2021). pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. International Journal of Biological Macromolecules, 166, 741–750. https://doi.org/10.1016/j.ijbiomac.2020.10.231

    Article  CAS  PubMed  Google Scholar 

  • Alnadari, F., Abdin, M., Ennab, W., Mohedein, A., & Nasiru, M. (2020). Metabolism of anthocyanins and modulation of gut microbiome in inflammatory bowel disease. Journal of Food Chemistry & Nanotechnology, 6(4), 207–217. https://doi.org/10.17756/jfcn.2020-103

  • Alnadari, F., Al-Dalali, S., Nasiru, M. M., Frimpong, E. B., Hu, Y., Abdalmegeed, D., Dai, Z., Abdulrahman, A.-A., Chen, G., & Zeng, X. (2023). A new natural drying method for food packaging and preservation using biopolymer-based dehydration film. Food Chemistry, 404, 134689. https://doi.org/10.1016/j.foodchem.2022.134689

  • Alnadari, F., Bassey, A. P., Abdin, M., Salama, M. A., Nasiru, M. M., Dai, Z., Hu, Y., Zeng, X. J. J., & o. P., & Environment, t. (2022). Development of hybrid film based on carboxymethyl chitosan-gum Arabic incorporated citric acid and polyphenols from Cinnamomum camphora seeds for active food packaging. Journal of Polymers and the Environment, 30, 3582–3597. https://doi.org/10.1007/s10924-022-02453-x

    Article  CAS  Google Scholar 

  • Atakoohi, S. E., Naeiji, P., Peyvandi, K., & Sanatgar, S. M. (2021). The experimental study and molecular dynamic simulation of THF hydrate growth kinetics in the presence of Arabic and Guar gum: new approaches in promotion of THF hydrate formation. Journal of Molecular Liquids, 325, 115249. https://doi.org/10.1016/j.molliq.2020.115249

  • Bao, Y., Cui, H., Tian, J., Ding, Y., Tian, Q., Zhang, W., Wang, M., Zang, Z., Sun, X., & Li, B. (2022). Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring. Food Control, 131, 108441. https://doi.org/10.1016/j.foodcont.2021.108441

  • Chen, J., Luo, L., Cen, C., Liu, Y., Li, H., & Wang, Y. (2022). The nano antibacterial composite film carboxymethyl chitosan/gelatin/nano ZnO improves the mechanical strength of food packaging. International Journal of Biological Macromolecules, 220, 462–471. https://doi.org/10.1016/j.ijbiomac.2022.08.005

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Wu, M., Lu, P., Gao, L., Yan, S., & Wang, S. (2020). Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. International Journal of Biological Macromolecules, 149, 271–280. https://doi.org/10.1016/j.ijbiomac.2020.01.231

    Article  CAS  PubMed  Google Scholar 

  • Cheng, M., Yan, X., Cui, Y., Han, M., Wang, X., Wang, J., & Zhang, R. (2022). An eco-friendly film of pH-responsive indicators for smart packaging. Journal of Food Engineering, 321, 110943. https://doi.org/10.1016/j.jfoodeng.2022.110943

  • Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human consumption of microplastics. Environmental Science & Technology, 53(12), 7068–7074. https://doi.org/10.1021/acs.est.9b01517

    Article  CAS  Google Scholar 

  • de Souza, K. C., Correa, L. G., da Silva, T. B. V., Moreira, T. F. M., de Oliveira, A., Sakanaka, L. S., ... & Shirai, M. A. (2020). Soy protein isolate films incorporated with Pinhão (Araucaria angustifolia (Bertol.) Kuntze) extract for potential use as edible oil active packaging. Food and Bioprocess Technology, 13, 998–1008. https://doi.org/10.1007/s11947-020-02454-5

  • Deshmukh, R. K., Akhila, K., Ramakanth, D., & Gaikwad, K. K. (2022). Guar gum/carboxymethyl cellulose based antioxidant film incorporated with halloysite nanotubes and litchi shell waste extract for active packaging. International Journal of Biological Macromolecules, 201, 1–13. https://doi.org/10.1016/j.ijbiomac.2021.12.198

    Article  CAS  PubMed  Google Scholar 

  • Dong, W., Su, J., Chen, Y., Xu, D., Cheng, L., Mao, L., Gao, Y., & Yuan, F. (2022). Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging. Food Chemistry, 373, 131414. https://doi.org/10.1016/j.foodchem.2021.131414

  • Emir, A. A., Yildiz, E., Aydogdu, Y., & Sumnu, G. (2022). Active films based on Faba bean (Vicia faba L.) flour incorporated with Sumac (Rhus coriaria): Assessment of antioxidant and antimicrobial performances of packaging for shelf life of chicken breast. Food and Bioprocess Technology, 16, 327–341. https://doi.org/10.1007/s11947-022-02940-y

    Article  CAS  Google Scholar 

  • Ezati, P., Khan, A., Rhim, J. W., Roy, S., & Hassan, Z. U. (2022). Saffron: Perspectives and sustainability for active and intelligent food packaging applications. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-022-02949-3

    Article  Google Scholar 

  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser, C., Peñaloza, A., Guarda, A., Galotto, M. J., Bruna, J. E., & Rodríguez, F. J. (2016). Development of an active packaging film based on a methylcellulose coating containing murta (Ugni molinae Turcz) leaf extract. Food and Bioprocess Technology, 9, 298–307. https://doi.org/10.1007/s11947-015-1623-8

    Article  CAS  Google Scholar 

  • Huang, G.-Q., Liu, L.-N., Han, X.-N., & Xiao, J.-X. (2017). Intestine-targeted delivery potency of the O-carboxymethyl chitosan-gum Arabic coacervate: Effects of coacervation acidity and possible mechanism. Materials Science and Engineering: C, 79, 423–429. https://doi.org/10.1016/j.msec.2017.05.074

    Article  CAS  PubMed  Google Scholar 

  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  • Kang, S., Xiao, Y., Guo, X., Huang, A., & Xu, H. (2021). Development of gum arabic-based nanocomposite films reinforced with cellulose nanocrystals for strawberry preservation. Food Chemistry, 350, 129199. https://doi.org/10.1016/j.foodchem.2021.129199

  • Khanjanzadeh, H., Park, B.-D., & Pirayesh, H. (2022). Intelligent pH-and ammonia-sensitive indicator films using neutral red immobilized onto cellulose nanofibrils. Carbohydrate Polymers, 296, 119910. https://doi.org/10.1016/j.carbpol.2022.119910

  • Kumar, H., Ahuja, A., Kadam, A. A., Rastogi, V. K., & Negi, Y. S. (2022). Antioxidant film based on chitosan and tulsi essential oil for food packaging. Food and Bioprocess Technology, 16, 342–355. https://doi.org/10.1007/s11947-022-02938-6

    Article  CAS  Google Scholar 

  • Lefebvre, C., Rubez, G., Khartabil, H., Boisson, J.-C., Contreras-García, J., & Hénon, E. (2017). Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Physical Chemistry Chemical Physics, 19(27), 17928–17936. https://doi.org/10.1039/C7CP02110K

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Zhu, W., Xue, H., Chen, Z., Chen, Y., & Wang, X. (2015). Physical and structural properties of peanut protein isolate-gum Arabic films prepared by various glycation time. Food Hydrocolloids, 43, 322–328. https://doi.org/10.1016/j.foodhyd.2014.06.003

    Article  CAS  Google Scholar 

  • Liu, C.-M., Perng, M.-H., & Chen, C.-Y. (2018). Antioxidant activities of crude extracts from peel and seed of Cinnamomum camphora. Biomedical Research 29, 2854–2858. https://doi.org/10.4066/biomedicalresearch.29-18-789

  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  • Lu, T. M. (2019). Accessed 20 March. program, Version 1.8. http://www.keinsci.com/research/molclus.html

  • Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators b: Chemical, 235, 401–407. https://doi.org/10.1016/j.snb.2016.05.107

    Article  CAS  Google Scholar 

  • Maroufi, L. Y., Ghorbani, M., & Tabibiazar, M. (2020). A gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology, 13, 1633–1644. https://doi.org/10.1007/s11947-020-02509-7

    Article  CAS  Google Scholar 

  • Maroufi, L. Y., Shahabi, N., Ghanbarzadeh, M. D., & Ghorbani, M. (2022). Development of antimicrobial active food packaging film based on gelatin/dialdehyde quince seed gum incorporated with apple peel polyphenols. Food and Bioprocess Technology, 15(3), 693–705. https://doi.org/10.1007/s11947-022-02774-8

    Article  CAS  Google Scholar 

  • Neese, F. (2018). Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science, 8(1), e1327. https://doi.org/10.1002/wcms.1606

  • Qin, Y., Liu, Y., Yong, H., Liu, J., Zhang, X., & Liu, J. (2019). Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules, 134, 80–90. https://doi.org/10.1016/j.ijbiomac.2019.05.029

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Avalos, M. C., Minjares-Fuentes, R., Femenia, A., Contreras-Esquivel, J. C., Quintero-Ramos, A., Esparza-Rivera, J. R., & Meza-Velázquez, J. A. (2019). Application of an alginate–chitosan edible film on figs (Ficus carica): Effect on bioactive compounds and antioxidant capacity. Food and Bioprocess Technology, 12, 499–511. https://doi.org/10.1007/s11947-018-2226-y

    Article  CAS  Google Scholar 

  • Riahi, Z., Rhim, J.-W., Bagheri, R., Pircheraghi, G., & Lotfali, E. (2022). Carboxymethyl cellulose-based functional film integrated with chitosan-based carbon quantum dots for active food packaging applications. Progress in Organic Coatings, 166, 106794. https://doi.org/10.1016/j.porgcoat.2022.106794

  • Riaz, A., Lagnika, C., Luo, H., Dai, Z., Nie, M., Hashim, M. M., Liu, C., Song, J., & Li, D. (2020). Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. International Journal of Biological Macromolecules, 150, 595–604. https://doi.org/10.1016/j.ijbiomac.2020.02.078

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2020). Edible films prepared with different biopolymers, containing polyphenols extracted from elderberry (Sambucus Nigra L.), to protect food products and to improve food functionality. Food and Bioprocess Technology, 13, 1742–1754. https://doi.org/10.1007/s11947-020-02516-8

    Article  CAS  Google Scholar 

  • Roy, S., & Rhim, J.-W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules, 148, 666–676. https://doi.org/10.1016/j.ijbiomac.2020.01.204

    Article  CAS  PubMed  Google Scholar 

  • Sadeghizadeh-Yazdi, J., Habibi, M., Kamali, A. A., & Banaei, M. (2019). Application of edible and biodegradable starch-based films in food packaging: a systematic review and meta-analysis. Current Research in Nutrition and Food Science, 7(3), 624–637. https://doi.org/10.12944/CRNFSJ.7.3.03

  • Salama, M. A., El Harkaoui, S., Nounah, I., Sakr, H., Abdin, M., Owon, M., Ibrahim, A., Charrouf, Z., & Matthäus, B. (2020). Oxidative stability of Opuntia ficus-indica seeds oil blending with Moringa oleifera seeds oil. Oilseeds & Fats Crops and Lipids, 27, 53. https://doi.org/10.1051/ocl/2020061

    Article  CAS  Google Scholar 

  • Singh, M. R., Gupta, P., & Gupta, K. (2019). The litchi (Litchi Chinensis) peels extract as a potential green inhibitor in prevention of corrosion of mild steel in 0.5 M H2SO4 solution. Arabian Journal of Chemistry, 12(7), 1035–1041. https://doi.org/10.1016/j.arabjc.2015.01.002

  • Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  • Stewart. (2016). MOPAC2016. Stewart Computational Chemistry. Colorado Springs, CO.

  • Suriyatem, R., Auras, R. A., Rachtanapun, C., & Rachtanapun, P. (2018). Biodegradable rice starch/carboxymethyl chitosan films with added propolis extract for potential use as active food packaging. Polymers, 10(9), 954. https://doi.org/10.3390/polym10090954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, S. L., Jotani, M. M., & Tiekink, E. R. (2019). Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallographica Section e: Crystallographic Communications, 75(3), 308–318. https://doi.org/10.1107/S2056989019001129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Li, M., Zhang, L., Fu, S., & Wang, C. (2017). Extraction of natural dyes from Cinnamomum camphora (L.) presl fruit and their application on wool fabric. Textile Research Journal, 87(20), 2550–2560. https://doi.org/10.1177/0040517516665266

  • Wang, H., Gong, X., Miao, Y., Guo, X., Liu, C., Fan, Y. Y., Zhang, J., Niu, B., & Li, W. (2019a). Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chemistry, 283, 397–403. https://doi.org/10.1016/j.foodchem.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Xia, P., Wang, S., Liang, J., Sun, Y., Yue, P., & Gao, X. (2019b). Packaging films formulated with gelatin and anthocyanins nanocomplexes: Physical properties, antioxidant activity and its application for olive oil protection. Food Hydrocolloids, 96, 617–624. https://doi.org/10.1016/j.foodhyd.2019.06.004

    Article  CAS  Google Scholar 

  • Yang, X., & Boyle, R. A. (2016). Sensory evaluation of oils/fats and oil/fat–based foods. In Oxidative stability and shelf life of foods containing oils and fats, 157–185. https://doi.org/10.1016/B978-1-63067-056-6.00003-3

  • Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., & Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 90, 216–224. https://doi.org/10.1016/j.foodhyd.2018.12.015

    Article  CAS  Google Scholar 

  • Zhang, P., Zhao, Y., & Shi, Q. (2016). Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydrate Polymers, 153, 345–355. https://doi.org/10.1016/j.carbpol.2016.07.082

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Pan, F., Mehmood, A., Zhang, H., Rehman, A. U., Li, J., Hao, S., & Wang, C. (2021). Improved color stability of anthocyanins in the presence of ascorbic acid with the combination of rosmarinic acid and xanthan gum. Food Chemistry, 351, 129317. https://doi.org/10.1016/j.foodchem.2021.129317

Download references

Funding

This work was supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Taif University Researchers Supporting Project Number (TURSP-2020/140).

Author information

Authors and Affiliations

Authors

Contributions

Fawze Alnadari: conceptualization, methodology, software, writing an original draft. Sam Al-Dalali: methodology, software, writing an original draft. Fei Pan: methodology, software, validation, data curation. Mohamed Abdin: conceptualization, methodology. Evans Boateng Frimpong: methodology, data curation. Zhuqing Dai: visualization, investigation. Aisha AL-Dherasi: investigation. Xiaoxiong Zeng: supervision, resources, project administration, writing and editing draft.

Corresponding author

Correspondence to Xiaoxiong Zeng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnadari, F., Al-Dalali, S., Pan, F. et al. Physicochemical Characterization, Molecular Modeling, and Applications of Carboxymethyl Chitosan-Based Multifunctional Films Combined with Gum Arabic and Anthocyanins. Food Bioprocess Technol 16, 2984–3002 (2023). https://doi.org/10.1007/s11947-023-03122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03122-0

Keywords

Navigation