Skip to main content
Log in

Active Films Based on Faba Bean (Vicia faba L.) Flour Incorporated with Sumac (Rhus coriaria): Assessment of Antioxidant and Antimicrobial Performances of Packaging for Shelf Life of Chicken Breast

  • Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Sumac (Rhus coriaria) cultivated mainly in the Mediterranean region, Eastern and Western North America, South Africa, and Asia is rich in phenolic compounds, especially tannins, anthocyanins, and flavones. For this reason, the sumac extract has the potential to be incorporated in the films that could be used as active packaging material. For that purpose, this study aimed to develop the best biodegradable and eco-friendly active food package made from faba bean flour and sumac extract. To evaluate the films, the physical (moisture content, solubility, water vapor permeability, mechanic, opacity, and color), antioxidant, and antimicrobial properties and the chemical and thermal characteristic of films were investigated. While sumac incorporation decreased the water vapor permeability (WVP) of films, the opacity, tensile strength, and elongation at break of films increased. The potential radical scavenging activities of the films were tested with two different methods (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2ʹ-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)), and the results proved the films’ enhanced antioxidant activity, especially the highest sumac concentrations. The addition of sumac extract also increased the thermal stability of the films. Antimicrobial activity of the films was also tested on Gram (−) Escherichia coli (ATCC 11229), and Gram ( +) Staphylococcus aureus (ATCC 43300) bacterial cultures, and the film with the highest sumac concentration (FB_S_4) had inhibitory activity on S. aureus showing 26-mm clear zone. To illustrate the effect of active packaging on real food systems, the chicken breast was packaged with FB_S_4 film at refrigerator storage (4 °C). Although chicken meat packed with faba bean film without sumac extract (FB) spoiled within 3 days, chicken packed in FB_S_4 film exceeded the microbial threshold at the end of day 7. Therefore, sumac extract–incorporated films can be suggested as a potential food package to extend the shelf life of perishable foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  • Ahmadi, R., Eskandani, M. A., & Saadati, D. (2017). Evaluation of antimicrobial effect of Iranian sumac on Bacillus cereus in a commercial barley soup. Slovenian Veterinary Research, 54(2), 65–69.

    Google Scholar 

  • Aydogdu, A., Kirtil, E., Sumnu, G., Oztop, M. H., & Aydogdu, Y. (2018). Utilization of lentil flour as a biopolymer source for the development of edible films. Journal of Applied Polymer Science, 135(23), 46356. https://doi.org/10.1002/app.46356

    Article  CAS  Google Scholar 

  • Bahrami, A., Delshadi, R., Assadpour, E., Mahdi, S., & Williams, L. (2020). Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science, 278, 102140. https://doi.org/10.1016/j.cis.2020.102140

    Article  CAS  Google Scholar 

  • Bayram, Ö. A., Bayram, M., & Tekin, A. R. (2005). Spray drying of sumac flavour using sodium chloride, sucrose, glucose and starch as carriers. Journal of Food Engineering, 69(2), 253–260. https://doi.org/10.1016/j.jfoodeng.2004.08.012

    Article  Google Scholar 

  • Ben Mahmoud, S., Saad, H., Charrier, B., Pizzi, A., Rode, K., Ayed, N., & Charrier-El Bouhtoury, F. (2015). Characterization of sumac (Rhus tripartitum) root barks tannin for a potential use in wood adhesives formulation. Wood Science and Technology, 49(1), 205–221. https://doi.org/10.1007/s00226-014-0686-4

    Article  CAS  Google Scholar 

  • Benbettaïeb, N., Debeaufort, F., & Karbowiak, T. (2019). Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Critical Reviews in Food Science and Nutrition, 59(21), 3431–3455. https://doi.org/10.1080/10408398.2018.1494132

    Article  CAS  Google Scholar 

  • Catherine, A. R. (1997). Antioxidant properties of phenolic. Trends in Plant Science, 2(4), 152–159.

    Article  Google Scholar 

  • Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., et al. (2019). Application of protein-based films and coatings for food packaging: A review. Polymers, 11(12), 1–32. https://doi.org/10.3390/polym11122039

    Article  CAS  Google Scholar 

  • Choi, I., Lee, S. E., Chang, Y., Lacroix, M., & Han, J. (2018). Effect of oxidized phenolic compounds on cross-linking and properties of biodegradable active packaging film composed of turmeric and gelatin. Lwt, 93(March), 427–433. https://doi.org/10.1016/j.lwt.2018.03.065

    Article  CAS  Google Scholar 

  • European Union. (2007). Commission regulation (EC) No 1441/2007, of 5 December 2007, amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Official Journal of the European Union, 322(1441), 12–29.

  • Fadıloglu, E. E., & Çoban, E. (2018). Effects of chitosan edible coatings enriched with sumac on the quality and the shelf life of rainbow trout ( Oncorhynchus mykiss, Walbaum, 1792) fillets. Journal of Food Safety, 38, 1–8. https://doi.org/10.1111/jfs.12545

    Article  CAS  Google Scholar 

  • Fasihnia, S. H., Peighambardoust, S. H., Peighambardoust, S. J., Oromiehie, A., Soltanzadeh, M., & Peressini, D. (2020). Migration analysis, antioxidant, and mechanical characterization of polypropylene-based active food packaging films loaded with BHA, BHT, and TBHQ. Journal of Food Science, 85(8), 2317–2328. https://doi.org/10.1111/1750-3841.15337

    Article  CAS  Google Scholar 

  • Grassia, M., Sarghini, F., Bruno, M., Cinquanta, L., Scognamiglio, M., Pacifico, S., et al. (2021). Chemical composition and microencapsulation suitability of sumac ( Rhus coriaria L .) fruit extract. European Food Research and Technology, 247(5), 1133–1148. https://doi.org/10.1007/s00217-021-03694-1

  • Guerrero, P., Nur Hanani, Z. A., Kerry, J. P., & De La Caba, K. (2011). Characterization of soy protein-based films prepared with acids and oils by compression. Journal of Food Engineering, 107(1), 41–49. https://doi.org/10.1016/j.jfoodeng.2011.06.003

    Article  CAS  Google Scholar 

  • Gulmez, M., Oral, N., & Vatansever, L. (2006). The effect of water extract of sumac ( Rhus coriaria L .) and lactic acid on decontamination and shelf life of raw broiler wings. Poultry Science, 85(8), 1466–1471. https://doi.org/10.1093/ps/85.8.1466

  • Gutiérrez-del-Río, I., Fernández, J., & Lombó, F. (2018). Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. International Journal of Antimicrobial Agents, 52(3), 309–315. https://doi.org/10.1016/j.ijantimicag.2018.04.024

    Article  CAS  Google Scholar 

  • Hanani, Z. A. N., Yee, F. C., & Nor-khaizura, M. A. R. (2019). Effect of pomegranate (Punica granatum L .) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocolloids, 89(June 2018), 253–259. https://doi.org/10.1016/j.foodhyd.2018.10.007

  • Jafarzadeh, S., Rhim, J. W., Alias, A. K., Ariffin, F., & Mahmud, S. (2019). Application of antimicrobial active packaging film made of semolina flour, nano zinc oxide and nano-kaolin to maintain the quality of low-moisture mozzarella cheese during low-temperature storage. Journal of the Science of Food and Agriculture, 99(6), 2716–2725. https://doi.org/10.1002/jsfa.9439

    Article  CAS  Google Scholar 

  • Kapci, B., Neradová, E., Čížková, H., Voldřich, M., Rajchl, A., & Capanoglu, E. (2013). Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. Journal of Food and Nutrition Research, 52(4), 219–229.

    CAS  Google Scholar 

  • Khalid, S., Yu, L., Feng, M., Meng, L., Bai, Y., Ali, A., et al. (2018). Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life, 18(March), 71–79. https://doi.org/10.1016/j.fpsl.2018.08.008

    Article  Google Scholar 

  • Kim, S., Kang, J., & Song, K. B. (2020). Development of a sword bean ( Canavalia gladiata ) starch film containing goji berry extract. Food and Bioprocess Technology, 13, 911–921.

    Article  CAS  Google Scholar 

  • Kirtil, E., Aydogdu, A., Svitova, T., & Radke, C. J. (2021). Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packaging and Shelf Life, 29(December 2019), 100687. https://doi.org/10.1016/j.fpsl.2021.100687

  • Kocakulak, S., Sumnu, G., & Sahin, S. (2019a). Chickpea flour-based biofilms containing gallic acid to be used as active edible films. Journal of Applied Polymer Science, 136(26), 1–9. https://doi.org/10.1002/app.47704

    Article  CAS  Google Scholar 

  • Kocakulak, S., Sumnu, G., & Sahin, S. (2019b). Chickpea flour-based bio films containing gallic acid to be used as active edible films. Journal of Applied Polymer Science, 47704, 1–9. https://doi.org/10.1002/app.47704

    Article  CAS  Google Scholar 

  • Kossah, R., Nsabimana, C., Zhang, H., & Chen, W. (2010). Optimization of extraction of polyphenols from Syrian sumac ( Rhus coriaria L .) and Chinese sumac ( Rhus typhina L .) fruits. Research Journal of Phytochemistry, 4(3), 146–153. https://doi.org/10.3923/rjphyto.2010.146.153

  • Krishnaiah, D., Sarbatly, R., & Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 89, 217–233. https://doi.org/10.1016/j.fbp.2010.04.008

    Article  CAS  Google Scholar 

  • Lai, J., Wang, H., Wang, D., Fang, F., Wang, F., & Wu, T. (2014). Ultrasonic extraction of antioxidants from Chinese sumac (Rhus typhina L.) fruit using response surface methodology and their characterization. Molecules, 19, 9019–9032. https://doi.org/10.3390/molecules19079019

    Article  CAS  Google Scholar 

  • Langroodi, M. A., Tajik, H., Mehdizadeh, T., Moradi, M., Moghaddas, E., & Mahmoudian, A. (2018). Effects of sumac extract dipping and chitosan coating enriched with Zataria multi flora Boiss oil on the shelf-life of meat in modi fied atmosphere packaging. LWT - Food Science and Technology, 98(April), 372–380. https://doi.org/10.1016/j.lwt.2018.08.063

    Article  CAS  Google Scholar 

  • Liu, Q.-R., Wang, W., Qi, J., Huang, Q., & Xiao, J. (2019). Oregano essential oil loaded soybean polysaccharide films: Effect of pickering type immobilization on physical and antimicrobial properties. Food Hydrocolloids, 87, 165–172. https://doi.org/10.1016/J.FOODHYD.2018.08.011

    Article  CAS  Google Scholar 

  • Liu, W., Xie, J., Li, L., Xue, B., Li, X., Gan, J., et al. (2021). Properties of phenolic acid-chitosan composite films and preservative effect on Penaeus vannamei. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2021.130531

    Article  Google Scholar 

  • Lv, F., Liang, H., Yuan, Q., & Li, C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, 44(9), 3057–3064. https://doi.org/10.1016/j.foodres.2011.07.030

    Article  CAS  Google Scholar 

  • Mahdavi, S., Hesami, B., & Sharafi, Y. (2018). Antimicrobial and antioxidant activities of Iranian sumac (Rhus coriaria L.) fruit ethanolic extract. Journal of Applied Microbiology and Biochemistry, 02(02), 1–5. https://doi.org/10.21767/2576-1412.100021

  • Maroufi, L. Y., & Ghorbani, M. (2020a). Gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology, 13, 1633–1644.

    Article  Google Scholar 

  • Maroufi, L. Y., & Ghorbani, M. (2020b). A gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology, 13, 1633–1644.

    Article  Google Scholar 

  • Maroufi, L. Y., Shahabi, N., Ghanbarzadeh, M., & dokht, & Ghorbani, M. (2022). Development of antimicrobial active food packaging film based on gelatin/dialdehyde quince seed gum incorporated with apple peel polyphenols. Food and Bioprocess Technology, 15(3), 693–705. https://doi.org/10.1007/s11947-022-02774-8

    Article  CAS  Google Scholar 

  • Moghadam, M., Salami, M., Mohammadian, M., & Emam-Djomeh, Z. (2021). Development and characterization of pH-sensitive and antioxidant edible films based on mung bean protein enriched with Echium amoenum anthocyanins. Journal of Food Measurement and Characterization, 15(4), 2984–2994. https://doi.org/10.1007/s11694-021-00872-3

    Article  Google Scholar 

  • Motelica, L., Ficai, D., Ficai, A., Oprea, O. C., Kaya, D. A., & Andronescu, E. (2020). Biodegradable antimicrobial food packaging: Trends and perspectives. Foods. https://doi.org/10.3390/foods9101438

  • Muppalla, S. R., Kanatt, S. R., Chawla, S. P., & Sharma, A. (2014). Carboxymethyl cellulose-polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packaging and Shelf Life, 2(2), 51–58. https://doi.org/10.1016/j.fpsl.2014.07.002

    Article  Google Scholar 

  • Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, 86(3), 325–332. https://doi.org/10.1016/j.foodchem.2003.09.038

    Article  CAS  Google Scholar 

  • Nasar-abbas, S. M., & Halkman, A. K. (2004). Antimicrobial effect of water extract of sumac ( Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. International Journal of Food Microbiology, 97, 63–69. https://doi.org/10.1016/j.ijfoodmicro.2004.04.009

    Article  CAS  Google Scholar 

  • Ochoa-Yepes, O., Medina-Jaramillo, C., Guz, L., & Famá, L. (2018). Biodegradable and edible starch composites with fiber-rich lentil flour to use as food packaging. Starch - Stärke, 70(7–8), 1700222. https://doi.org/10.1002/star.201700222

    Article  CAS  Google Scholar 

  • Orsuwan, A., & Sothornvit, R. (2018). Active banana flour nanocomposite films incorporated with garlic essential oil as multifunctional packaging material for food application. Food and Bioprocess Technology, 11(6), 1199–1210. https://doi.org/10.1007/s11947-018-2089-2

    Article  CAS  Google Scholar 

  • Peng, Y., Wu, Y., & Li, Y. (2013). Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules, 59, 282–289. https://doi.org/10.1016/j.ijbiomac.2013.04.019

    Article  CAS  Google Scholar 

  • Pérez, P. F., Ollé Resa, C. P., Gerschenson, L. N., & Jagus, R. J. (2021). Addition of Zein for the improvement of physicochemical properties of antimicrobial tapioca starch edible film. Food and Bioprocess Technology, 14(2), 262–271. https://doi.org/10.1007/s11947-020-02565-z

    Article  CAS  Google Scholar 

  • Peron-Schlosser, B., Carpiné, D., Matos Jorge, R. M., & Rigon Spier, M. (2021). Optimization of wheat flour by product films: A technological and sustainable approach for bio-based packaging material. Journal of Food Science, 86(10), 4522–4538. https://doi.org/10.1111/1750-3841.15908

    Article  CAS  Google Scholar 

  • Rajkovic, A., Jovanovic, J., Monteiro, S., Decleer, M., Andjelkovic, M., Foubert, A., et al. (2020). Detection of toxins involved in foodborne diseases caused by Gram-positive bacteria. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1605–1657. https://doi.org/10.1111/1541-4337.12571

    Article  CAS  Google Scholar 

  • Rasid, N. A. M., Nazmi, N. N. M., Isa, M. I. N., & Sarbon, N. M. (2018). Rheological, functional and antioxidant properties of films forming solution and active gelatin films incorporated with Centella asiatica (L.) urban extract. Food Packaging and Shelf Life, 18(October), 115–124. https://doi.org/10.1016/j.fpsl.2018.10.002

  • Reza, M., Amin, G., Mahdi, M., & Attari, A. (2007). Antimicrobial activities of Iranian sumac and avishan-e shirazi ( Zataria multi X ora ) against some food-borne bacteria. Food Control, 18, 646–649. https://doi.org/10.1016/j.foodcont.2006.03.002

    Article  Google Scholar 

  • Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., et al. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547–555. https://doi.org/10.1016/j.ijbiomac.2018.03.126

    Article  CAS  Google Scholar 

  • Rojas-Lema, S., Nilsson, K., Trifol, J., Langton, M., Gomez-Caturla, J., Balart, R., et al. (2021). Faba bean protein films reinforced with cellulose nanocrystals as edible food packaging material. Food Hydrocolloids, 121(July), 107019. https://doi.org/10.1016/j.foodhyd.2021.107019

    Article  CAS  Google Scholar 

  • Rubilar, J. F., Cruz, R. M. S., Silva, H. D., Vicente, A. A., Khmelinskii, I., & Vieira, M. C. (2013). Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115(4), 466–474. https://doi.org/10.1016/j.jfoodeng.2012.07.009

    Article  CAS  Google Scholar 

  • Saberi, B., Vuong, Q. V., Chockchaisawasdee, S., & Golding, J. B. (2017). Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food and Bioprocess Technology, 10, 2240–2250. https://doi.org/10.1007/s11947-017-1995-z

    Article  CAS  Google Scholar 

  • Sakhr, K., & El Khatib, S. (2020a). Physiochemical properties and medicinal, nutritional and industrial applications of Lebanese Sumac (Syrian Sumac - Rhus coriaria): A review. Heliyon, 6(1), e03207. https://doi.org/10.1016/j.heliyon.2020a.e03207

  • Sakhr, K., & El Khatib, S. (2020b). Physiochemical properties and medicinal , nutritional and industrial applications of Lebanese Sumac ( Syrian Sumac - Rhus coriaria ): A review. Heliyon, 6(June 2019), e03207. https://doi.org/10.1016/j.heliyon.2020b.e03207

  • Sharma, V., Kaur, M., Singh, K., & Kumar, S. (2020). Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean ( Vicia faba L.) starch. International Journal of Biological Macromolecules, 159, 243–249. https://doi.org/10.1016/j.ijbiomac.2020.05.014

    Article  CAS  Google Scholar 

  • Stämpfli, R., Brühwiler, P., Mourad, S., Verdejo, R., & Shaffer, M. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.

    Article  Google Scholar 

  • Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2016). Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology, 9(1), 172–181. https://doi.org/10.1007/s11947-015-1610-0

    Article  CAS  Google Scholar 

  • Sun, L., Sun, J., Chen, L., Niu, P., Yang, X., & Guo, Y. (2017). Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydrate Polymers, 163, 81–91. https://doi.org/10.1016/j.carbpol.2017.01.016

    Article  CAS  Google Scholar 

  • Sun, X., & hong, Zhou, T. tong, Wei, C. hong, Lan, W. qing, Zhao, Y., Pan, Y. jie, & Wu, V. C. H. (2018). Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94(July), 155–161. https://doi.org/10.1016/j.foodcont.2018.07.012

    Article  CAS  Google Scholar 

  • Uygun, E., Yildiz, E., Sumnu, G., & Sahin, S. (2020). Microwave pretreatment for the improvement of physicochemical properties of carob flour and rice starch–based electrospun nanofilms. Food and Bioprocess Technology, 13(5), 838–850. https://doi.org/10.1007/s11947-020-02440-x

    Article  CAS  Google Scholar 

  • Wang, L., Dong, Y., Men, H., Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32(1), 35–41. https://doi.org/10.1016/j.foodhyd.2012.11.034

    Article  CAS  Google Scholar 

  • Wang, S., & Zhu, F. (2017). Chemical composition and biological activity of staghorn sumac (Rhus typhina ). Food Chemistry, 237, 431–443. https://doi.org/10.1016/j.foodchem.2017.05.111

    Article  CAS  Google Scholar 

  • Wang, X., Yong, H., Gao, L., Li, L., Jin, M., & Liu, J. (2019). Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocolloids, 89(October 2018), 56–66. https://doi.org/10.1016/j.foodhyd.2018.10.019

  • Wu, C., Sun, J., Zheng, P., Kang, X., Chen, M., Li, Y., et al. (2019). Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydrate Polymers, 222(February), 115006. https://doi.org/10.1016/j.carbpol.2019.115006

    Article  CAS  Google Scholar 

  • Wu, J., Sun, X., Guo, X., Ji, M., Wang, J., & Cheng, C. (2021). Physicochemical, antioxidant, in vitro release, and heat sealing properties of fish gelatin films incorporated with β-cyclodextrin/curcumin complexes for apple juice preservation. Food and Bioprocess Technology, 11(2018), 447–461.

    CAS  Google Scholar 

  • Yildiz, E., Bayram, I., Sumnu, G., Sahin, S., & Ibis, O. I. (2021a). Development of pea flour based active films produced through different homogenization methods and their effects on lipid oxidation. Food Hydrocolloids, 111(April 2020), 106238. https://doi.org/10.1016/j.foodhyd.2020.106238

  • Yildiz, E., Emir, A. A., Sumnu, G., & Kahyaoglu, L. N. (2022). Citric acid cross-linked curcumin/chitosan/chickpea flour film: An active packaging for chicken breast storage. Food Bioscience, 50(PA), 102121. https://doi.org/10.1016/j.fbio.2022.102121

  • Yildiz, E., İlhan, E., Kahyaoglu, L. N., Sumnu, G., & Oztop, M. H. (2021b). The effects of crosslinking agents on faba bean flour–chitosan- curcumin films and their characterization. Legume Science, 1–13.

  • Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26(April), 100550. https://doi.org/10.1016/j.fpsl.2020.100550

    Article  Google Scholar 

  • Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., & Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 90(December 2018), 216–224. https://doi.org/10.1016/j.foodhyd.2018.12.015

  • Zanela, J., Casagrande, M., Radaelli, J. C., Dias, A. P., Wagner Júnior, A., Malfatti, C. R. M., & Yamashita, F. (2021). Active biodegradable packaging for foods containing Baccharis dracunculifolia leaf as natural antioxidant. Food and Bioprocess Technology, 14(7), 1301–1310. https://doi.org/10.1007/s11947-021-02641-y

    Article  CAS  Google Scholar 

  • Zhang, C., Ma, Y., Zhao, Y., Hong, Y., Cai, S., & Pang, M. (2018). Phenolic composition, antioxidant and pancreatic lipase inhibitory activities of Chinese sumac (Rhus chinensis Mill.) fruits extracted by different solvents and interaction between myricetin-3-O-rhamnoside and quercetin-3-O-rhamnoside. International Journal of Food Science and Technology, 53(4), 1045–1053. https://doi.org/10.1111/ijfs.13680

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ayca Aydogdu Emir: conceptualization, supervision, methodology, investigation, writing—original draft; Eda Yildiz: methodology, investigation, writing—original draft, visualization; Yıldırım Aydogdu: conceptualization, methodology, investigation; Gulum Sumnu: conceptualization, writing—review and editing.

Corresponding author

Correspondence to Ayca Aydogdu Emir.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emir, A.A., Yildiz, E., Aydogdu, Y. et al. Active Films Based on Faba Bean (Vicia faba L.) Flour Incorporated with Sumac (Rhus coriaria): Assessment of Antioxidant and Antimicrobial Performances of Packaging for Shelf Life of Chicken Breast. Food Bioprocess Technol 16, 327–341 (2023). https://doi.org/10.1007/s11947-022-02940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02940-y

Keywords

Navigation