Skip to main content

Advertisement

Log in

Cell Nucleation Dynamic and Expansion Characteristics of Milk Protein Puffs Containing Fruit Pomace Made by Supercritical Fluid Extrusion

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Grape and apple pomace powders, a good source of dietary fiber and nutrients, were incorporated in formulations containing milk protein concentrate with over 81% milk protein (MPC-81) to produce puffed products using supercritical fluid extrusion (SCFX). The cellular structure and cell nucleation dynamics in the extruded samples were evaluated as function of pressure drop and supercritical CO2 (SCCO2) injection rates. Results showed that SCFX generated pomace-based extruded products had an expansion ratio up to 12.3 and microcellular structure (ranging in cell size from 278 to 540 µm) and cell density of the order of 104–105 cells/cm3. The general trend of increased cell density and decreased cell size of extrudates was observed by increasing pressure drop rate and SCCO2 content and exhibited a uniform cellular architecture when the injected SCCO2 level was close its saturation solubility in the aqueous phase of the dough, and the pressure drop rate was high, up to 141.04 MPa/s. Beyond these values, some structural collapse was observed in both extrudates. Although the extrudates had the same level of expansion, their hardness values gradually decreased, indicating that the textural qualities and microcellular structure in extrudates can be controlled by regulating the SCCO2 injection and pressure drop rates. It is thus reasonable to suggest that the SCFX technology provides a unique strategy to control cellular morphology, expansion, and physicochemical characteristics of nutritionally superior extruded products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be provided on request.

References

  • Agarwal, S., Beausire, R. L. W., Patel, S., & Patel, H. (2015). Innovative uses of milk protein concentrates in product development. Journal of Food Science, 80(S1), A23–A29.

    Article  CAS  PubMed  Google Scholar 

  • Alavi, S., & Rizvi, S. S. H. (2005). Strategies for enhancing expansion in starch-based microcellular foams produced by supercritical fluid extrusion. International Journal of Food Properties, 8(1), 23–34.

    Article  CAS  Google Scholar 

  • Alavi, S., & Rizvi, S. S. H. (2009). Supercritical fluid extrusion—a novel method for producing microcellular structures in starch-based matrices. In Novel food processing—effects on rheological and functional properties, 403–420. CRC Press, Baca Raton, FL.

  • Allen, K. E., Carpenter, C. E., & Walsh, M. K. (2007). Influence of protein level and starch type on an extrusion-expanded whey product. International Journal of Food Science and Technology, 42(8), 953–960. https://doi.org/10.1111/j.1365-2621.2006.01316.x

  • Antonić, B., Jančíková, S., Dordević, D., & Tremlová, B. (2020). Grape pomace valorizatioN: A systematic review and meta-analysis. Foods, 9(11), 1627. https://doi.org/10.3390/foods9111627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora, B., & Rizvi, S. S. H. (2022). In-mouth, self-disintegrating milk protein puffs-I: process development. Journal of Food Process Engineering, 45(11), e14144. https://doi.org/10.1111/jfpe.14144

  • Arora, B., Schulz, P., & Rizvi, S. S. H. (2021). In-process flow behavior and structure formation during supercritical fluid extrusion of milk protein concentrate. Journal of Food Processing and Preservation, 45(4), e15348.

    Article  CAS  Google Scholar 

  • Azdast, T., & Hasanzadeh, R. (2021). Increasing cell density/decreasing cell size to produce microcellular and nanocellular thermoplastic foams: A review. Journal of Cellular Plastics, 57(5), 769–797.

    Article  CAS  Google Scholar 

  • Barreira, J. C. M., Arraibi, A. A., & Ferreira, I. C. F. R. (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: potential use in dermal formulations. Trends in Food Science & Technology, 90, 76–87. https://doi.org/10.1016/j.tifs.2019.05.014

  • Bashir, S., Sharif, M. K., Butt, M. S., Rizvi, S. S. H., Paraman, I., & Ejaz, R. (2017). Preparation of micronutrients fortified Spirulina supplemented rice-soy crisps processed through novel supercritical fluid extrusion. Journal of Food Processing and Preservation, 41(3), e12986.

    Article  Google Scholar 

  • Bisharat, G. I., Oikonomopoulou, V. P., Panagiotou, N. M., Krokida, M. K., & Maroulis, Z. B. (2013). Effect of extrusion conditions on the structural properties of corn extrudates enriched with dehydrated vegetables. Food Research International, 53(1), 1–14. https://doi.org/10.1016/j.foodres.2013.03.043

  • Bouvier, J. M., Collado, M., Gardiner, D., Scott, M., & Schuck, P. (2013). Physical and rehydration properties of milk protein concentrates: Comparison of spray-dried and extrusion-porosified powders. Dairy Science and Technology, 93(4–5), 387–399. https://doi.org/10.1007/s13594-012-0100-7

  • Brenes, A., Viveros, A., Chamorro, S., & Arija, I. (2016). Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Animal Feed Science and Technology, 211, 1–17.

    Article  CAS  Google Scholar 

  • Cecchi, L., Innocenti, M., Urciuoli, S., Arlorio, M., Paoli, P., & Mulinacci, N. (2019). In depth study of phenolic profile and PTP-1B inhibitory power of cold-pressed grape seed oils of different varieties. Food Chemistry, 271, 380–387.

    Article  CAS  PubMed  Google Scholar 

  • Cho, K. Y., & Rizvi, S. S. H. (2008). The time-delayed expansion profile of supercritical fluid extrudates. Food Research International, 41(1), 31–42.

    Article  Google Scholar 

  • Cho, K. Y., & Rizvi, S. S. H. (2009). 3D microstructure of supercritical fluid extrudates I: Melt rheology and microstructure formation. Food Research International, 42(5–6), 595–602.

    Article  CAS  Google Scholar 

  • Cunningham, S. E., Mcminn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. Food and Bioproducts Processing, 86(1), 15–24. https://doi.org/10.1016/j.fbp.2007.10.008

  • Dogan, H., & Kokini, J. L. (2007). Psychophysical markers for crispness and influence of phase behavior and structure. Journal of Texture Studies, 38(3), 324–354.

    Article  Google Scholar 

  • FAOSTAT. (2021). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL

  • Huang, D. P., & Rooney, L. W. (2001). Starches for snack foods. Snack foods processing, 115–130.

  • Iqbal, A., Schulz, P., & Rizvi, S. S. H. (2021). Valorization of bioactive compounds in fruit pomace from agro-fruit industries: present insights and future challenges. Food Bioscience, 44(PA), 101384. https://doi.org/10.1016/j.fbio.2021.101384

  • Kabir, F., Sultana, M. S., & Kurnianta, H. (2015). Polyphenolic contents and antioxidant activities of underutilized grape (Vitis vinifera L.) pomace extracts. Preventive Nutrition and Food Science, 20(3), 210–214. https://doi.org/10.3746/pnf.2015.20.3.210

  • Kammerer, D. R., Kammerer, J., Valet, R., & Carle, R. (2014). Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Research International, 65, 2–12.

    Article  CAS  Google Scholar 

  • Karkle, E. L., Alavi, S., & Dogan, H. (2012). Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Research International, 46(1), 10–21. https://doi.org/10.1016/j.foodres.2011.11.003

    Article  Google Scholar 

  • Kim, E., Kweon, M. S., Romero-Diez, S., Gupta, A., Yan, X., Spofford, C., et al. (2021). Effects of pressure drop rate and CO2 content on the foaming behavior of newly developed high-melt-strength polypropylene in continuous extrusion. Journal of Cellular Plastics, 57(4), 413–432.

    Article  CAS  Google Scholar 

  • Lee, P. C., Kaewmesri, W., Wang, J., Park, C. B., Pumchusak, J., Folland, R., & Praller, A. (2008). Effect of die geometry on foaming behaviors of high-melt-strength polypropylene with CO2. Journal of Applied Polymer Science, 109(5), 3122–3132.

    Article  CAS  Google Scholar 

  • Liu, H., Hebb, R. L., Putri, N., & Rizvi, S. S. H. (2018). Physical properties of supercritical fluid extrusion products composed of milk protein concentrate with carbohydrates. International Journal of Food Science & Technology, 53(3), 847–856. https://doi.org/10.1111/ijfs.13624

  • Lue, S., Hsieh, F., Peng, I. C., & Huff, H. E. (1990). Expansion of corn extrudates containing dietary fiber: a microstructure study. Lebensmittel-Wissenschaft+ Technologie, 23(2), 165–173.

  • Lyu, F., Luiz, S. F., Azeredo, D. R. P., Cruz, A. G., Ajlouni, S., & Ranadheera, C. S. (2020). Apple pomace as a functional and healthy ingredient in food products: A review. Processes, 8(3), 1–15. https://doi.org/10.3390/pr8030319

    Article  CAS  Google Scholar 

  • Maskan, M., & Altan, A. (2011). Advances in food extrusion technology. CRC Press.

    Google Scholar 

  • Osorio, L. L. D. R., Flórez-López, E., & Grande-Tovar, C. D. (2021). The potential of selected agri-food loss and waste to contribute to a circular economy: applications in the food, cosmetic and pharmaceutical industries. Molecules (Basel, Switzerland), 26(2). https://doi.org/10.3390/molecules26020515

  • Paraman, I., Sharif, M. K., Supriyadi, S., & Rizvi, S. S. H. (2015). Agro-food industry byproducts into value-added extruded foods. Food and Bioproducts Processing, 96, 78–85. https://doi.org/10.1016/j.fbp.2015.07.003

  • Paraman, I., Wagner, M. E., & Rizvi, S. S. H. (2012). Micronutrient and protein-fortified whole grain puffed rice made by supercritical fluid extrusion. Journal of Agricultural and Food Chemistry, 60(44), 11188–11194.

    Article  CAS  PubMed  Google Scholar 

  • Park, C. B., & Cheung, L. K. (1997). A study of cell nucleation in the extrusion of polypropylene foams. Polymer Engineering & Science, 37(1), 1–10.

    Article  CAS  Google Scholar 

  • Pugliese, A., Paciulli, M., Chiavaro, E., & Mucchetti, G. (2016). Characterization of commercial dried milk and some of its derivatives by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 123(3), 2583–2590. https://doi.org/10.1007/s10973-016-5243-y

  • Rizvi, S. S. H., & Mulvaney, S. (1992, June 9). Extrusion processing with supercritical fluids. Google Patents.

  • Rostami, M., Azdast, T., Hasanzadeh, R., & Moradian, M. (2021). A study on fabrication of nanocomposite polyethylene foam through extrusion foaming procedure. Cellular Polymers, 40(6), 231–243.

    Article  CAS  Google Scholar 

  • Sun, V. Z., Paraman, I., & Rizvi, S. S. H. (2015). Supercritical fluid extrusion of protein puff made with fruit pomace and liquid whey. Food and Bioprocess Technology, 8(8), 1707–1715.

    Article  CAS  Google Scholar 

  • Walsh, M. K., & Wood, A. M. (2010). Properties of extrusion-expanded whey protein products containing fiber. International Journal of Food Properties, 13(4), 702–712.

    Article  CAS  Google Scholar 

  • Webb, P. A. (2001). Volume and density determinations for particle technologists. Micromeritics Instrument Corp, 2(16), 1.

    Google Scholar 

  • Xu, X., Park, C. B., Xu, D., & Pop-Iliev, R. (2003). Effects of die geometry on cell nucleation of PS foams blown with CO2. Polymer Engineering & Science, 43(7), 1378–1390.

    Article  CAS  Google Scholar 

  • Yoon, A. K., & Rizvi, S. S. H. (2020). Functional, textural, and sensory properties of milk protein concentrate-based supercritical fluid extrudates made with acid whey. International Journal of Food Properties, 23(1), 708–721. https://doi.org/10.1080/10942912.2020.1753768

    Article  CAS  Google Scholar 

  • Yoon, A. K., Singha, P., & Rizvi, S. S. H. (2021). Steam vs. SC–CO2–based extrusion: comparison of physical properties of milk protein concentrate extrudates. Journal of Food Engineering, 292, 110244.

Download references

Funding

This work was supported by the Foundation for Food and Agriculture Research, USDA. Wenger Manufacturing, Inc., Sabetha, KS, USA, also provided continued support with the extruder system.

Author information

Authors and Affiliations

Authors

Contributions

Aamir Iqbal: concept and design, investigation, methodology, writing — original draft.

Syed Husain Rizvi: critical revision, supervision.

Corresponding author

Correspondence to Aamir Iqbal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Rizvi, S.S.H. Cell Nucleation Dynamic and Expansion Characteristics of Milk Protein Puffs Containing Fruit Pomace Made by Supercritical Fluid Extrusion. Food Bioprocess Technol 16, 1746–1756 (2023). https://doi.org/10.1007/s11947-023-03018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03018-z

Keywords

Navigation